{"id":"https://openalex.org/W4205571336","doi":"https://doi.org/10.1093/bib/bbab584","title":"Vec2image: an explainable artificial intelligence model for the feature representation and classification of high-dimensional biological data by vector-to-image conversion","display_name":"Vec2image: an explainable artificial intelligence model for the feature representation and classification of high-dimensional biological data by vector-to-image conversion","publication_year":2021,"publication_date":"2021-12-21","ids":{"openalex":"https://openalex.org/W4205571336","doi":"https://doi.org/10.1093/bib/bbab584","pmid":"https://pubmed.ncbi.nlm.nih.gov/35106553"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1093/bib/bbab584","pdf_url":"https://academic.oup.com/bib/article-pdf/23/2/bbab584/42806081/bbab584.pdf","source":{"id":"https://openalex.org/S91767247","display_name":"Briefings in Bioinformatics","issn_l":"1467-5463","issn":["1467-5463","1477-4054"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310311648","host_organization_name":"Oxford University Press","host_organization_lineage":["https://openalex.org/P4310311647","https://openalex.org/P4310311648"],"host_organization_lineage_names":["University of Oxford","Oxford University Press"],"type":"journal"},"license":"cc-by-nc","license_id":"https://openalex.org/licenses/cc-by-nc","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://academic.oup.com/bib/article-pdf/23/2/bbab584/42806081/bbab584.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5033425255","display_name":"Hui Tang","orcid":"https://orcid.org/0000-0002-7306-0501"},"institutions":[{"id":"https://openalex.org/I90610280","display_name":"South China University of Technology","ror":"https://ror.org/0530pts50","country_code":"CN","type":"education","lineage":["https://openalex.org/I90610280"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hui Tang","raw_affiliation_strings":["School of Mathematics, South China University of Technology, Guangzhou, 510640, China"],"affiliations":[{"raw_affiliation_string":"School of Mathematics, South China University of Technology, Guangzhou, 510640, China","institution_ids":["https://openalex.org/I90610280"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016501386","display_name":"Xiangtian Yu","orcid":"https://orcid.org/0000-0002-9571-3446"},"institutions":[{"id":"https://openalex.org/I4210144482","display_name":"Shanghai Sixth People's Hospital","ror":"https://ror.org/049zrh188","country_code":"CN","type":"healthcare","lineage":["https://openalex.org/I4210144482"]},{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"education","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiangtian Yu","raw_affiliation_strings":["Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China"],"affiliations":[{"raw_affiliation_string":"Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China","institution_ids":["https://openalex.org/I4210144482","https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100448485","display_name":"Rui Liu","orcid":"https://orcid.org/0000-0002-4547-8695"},"institutions":[{"id":"https://openalex.org/I90610280","display_name":"South China University of Technology","ror":"https://ror.org/0530pts50","country_code":"CN","type":"education","lineage":["https://openalex.org/I90610280"]},{"id":"https://openalex.org/I4210090512","display_name":"Guangzhou Experimental Station","ror":"https://ror.org/00f2c2516","country_code":"CN","type":"facility","lineage":["https://openalex.org/I107851509","https://openalex.org/I4210090512","https://openalex.org/I4210127390","https://openalex.org/I4210151987"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Rui Liu","raw_affiliation_strings":["Pazhou Lab, Guangzhou 510330, China","School of Mathematics, South China University of Technology, Guangzhou, 510640, China"],"affiliations":[{"raw_affiliation_string":"School of Mathematics, South China University of Technology, Guangzhou, 510640, China","institution_ids":["https://openalex.org/I90610280"]},{"raw_affiliation_string":"Pazhou Lab, Guangzhou 510330, China","institution_ids":["https://openalex.org/I4210090512"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5026321844","display_name":"Tao Zeng","orcid":"https://orcid.org/0000-0002-0295-3994"},"institutions":[{"id":"https://openalex.org/I4210096013","display_name":"Shanghai Institute of Nutrition and Health","ror":"https://ror.org/00rytkh49","country_code":"CN","type":"facility","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210096013"]},{"id":"https://openalex.org/I4210165038","display_name":"University of Chinese Academy of Sciences","ror":"https://ror.org/05qbk4x57","country_code":"CN","type":"education","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210165038"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Tao Zeng","raw_affiliation_strings":["Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China","Guangzhou Laboratory, Guangzhou, China"],"affiliations":[{"raw_affiliation_string":"Guangzhou Laboratory, Guangzhou, China","institution_ids":[]},{"raw_affiliation_string":"Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China","institution_ids":["https://openalex.org/I4210096013","https://openalex.org/I4210165038"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":6,"corresponding_author_ids":["https://openalex.org/A5100448485","https://openalex.org/A5026321844"],"corresponding_institution_ids":["https://openalex.org/I90610280","https://openalex.org/I4210090512","https://openalex.org/I4210096013","https://openalex.org/I4210165038"],"apc_list":{"value":4011,"currency":"USD","value_usd":4011,"provenance":"doaj"},"apc_paid":{"value":4011,"currency":"USD","value_usd":4011,"provenance":"doaj"},"fwci":1.036,"has_fulltext":false,"cited_by_count":14,"citation_normalized_percentile":{"value":0.638317,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":"23","issue":"2","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11289","display_name":"Single-cell and spatial transcriptomics","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T11289","display_name":"Single-cell and spatial transcriptomics","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10885","display_name":"Gene expression and cancer classification","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9804,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.68631256},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.5471061},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.53714925},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.4509638},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.4328405},{"id":"https://openalex.org/keywords/biological-data","display_name":"Biological data","score":0.42887145}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7700305},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7266738},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.68631256},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.57615286},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.5471061},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.53714925},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.5344704},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.53186524},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5296718},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5041188},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.4509638},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.44087967},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.4328405},{"id":"https://openalex.org/C201797286","wikidata":"https://www.wikidata.org/wiki/Q4914986","display_name":"Biological data","level":2,"score":0.42887145},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.42324293},{"id":"https://openalex.org/C60644358","wikidata":"https://www.wikidata.org/wiki/Q128570","display_name":"Bioinformatics","level":1,"score":0.14610162},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.07871643},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D001185","descriptor_name":"Artificial Intelligence","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D003924","descriptor_name":"Diabetes Mellitus, Type 2","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D003924","descriptor_name":"Diabetes Mellitus, Type 2","qualifier_ui":"Q000235","qualifier_name":"genetics","is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D000069550","descriptor_name":"Machine Learning","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016571","descriptor_name":"Neural Networks, Computer","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1093/bib/bbab584","pdf_url":"https://academic.oup.com/bib/article-pdf/23/2/bbab584/42806081/bbab584.pdf","source":{"id":"https://openalex.org/S91767247","display_name":"Briefings in Bioinformatics","issn_l":"1467-5463","issn":["1467-5463","1477-4054"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310311648","host_organization_name":"Oxford University Press","host_organization_lineage":["https://openalex.org/P4310311647","https://openalex.org/P4310311648"],"host_organization_lineage_names":["University of Oxford","Oxford University Press"],"type":"journal"},"license":"cc-by-nc","license_id":"https://openalex.org/licenses/cc-by-nc","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921615","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/35106553","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1093/bib/bbab584","pdf_url":"https://academic.oup.com/bib/article-pdf/23/2/bbab584/42806081/bbab584.pdf","source":{"id":"https://openalex.org/S91767247","display_name":"Briefings in Bioinformatics","issn_l":"1467-5463","issn":["1467-5463","1477-4054"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310311648","host_organization_name":"Oxford University Press","host_organization_lineage":["https://openalex.org/P4310311647","https://openalex.org/P4310311648"],"host_organization_lineage_names":["University of Oxford","Oxford University Press"],"type":"journal"},"license":"cc-by-nc","license_id":"https://openalex.org/licenses/cc-by-nc","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.76}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61803360"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"12026608"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62172164"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"11871456"},{"funder":"https://openalex.org/F4320321885","funder_display_name":"Science and Technology Commission of Shanghai Municipality","award_id":"XDB38050200"},{"funder":"https://openalex.org/F4320321885","funder_display_name":"Science and Technology Commission of Shanghai Municipality","award_id":"2019B151502062"},{"funder":"https://openalex.org/F4320321885","funder_display_name":"Science and Technology Commission of Shanghai Municipality","award_id":"2021A1515012317"},{"funder":"https://openalex.org/F4320321885","funder_display_name":"Science and Technology Commission of Shanghai Municipality","award_id":"2017SHZDZX01"}],"datasets":[],"versions":[],"referenced_works_count":73,"referenced_works":["https://openalex.org/W1580018887","https://openalex.org/W1967937330","https://openalex.org/W1981276685","https://openalex.org/W1988790447","https://openalex.org/W2007078899","https://openalex.org/W2011143997","https://openalex.org/W2042897481","https://openalex.org/W2048643811","https://openalex.org/W2084101023","https://openalex.org/W2089474940","https://openalex.org/W2113242816","https://openalex.org/W2121660631","https://openalex.org/W2132254965","https://openalex.org/W2140095548","https://openalex.org/W2148143831","https://openalex.org/W2153504150","https://openalex.org/W2155388222","https://openalex.org/W2178888844","https://openalex.org/W2187089797","https://openalex.org/W2255388164","https://openalex.org/W2295598076","https://openalex.org/W2463988862","https://openalex.org/W2523369352","https://openalex.org/W2523620612","https://openalex.org/W2551194178","https://openalex.org/W2598326928","https://openalex.org/W2610617464","https://openalex.org/W2616922646","https://openalex.org/W2743416243","https://openalex.org/W2752829361","https://openalex.org/W2753908609","https://openalex.org/W2780517934","https://openalex.org/W2786672974","https://openalex.org/W2789956930","https://openalex.org/W2794480084","https://openalex.org/W2800225949","https://openalex.org/W2894687190","https://openalex.org/W2896691302","https://openalex.org/W2901677030","https://openalex.org/W2911964244","https://openalex.org/W2938350367","https://openalex.org/W2942256847","https://openalex.org/W2943491685","https://openalex.org/W2944545583","https://openalex.org/W2949177718","https://openalex.org/W2953251392","https://openalex.org/W2964643116","https://openalex.org/W2964962196","https://openalex.org/W2971653850","https://openalex.org/W2981350712","https://openalex.org/W2984629040","https://openalex.org/W2992151131","https://openalex.org/W3007874153","https://openalex.org/W3009710697","https://openalex.org/W3019246273","https://openalex.org/W3024992482","https://openalex.org/W3036137852","https://openalex.org/W3036429887","https://openalex.org/W3046761449","https://openalex.org/W3081962132","https://openalex.org/W3086494447","https://openalex.org/W3113237873","https://openalex.org/W3113769443","https://openalex.org/W3127181174","https://openalex.org/W3128918376","https://openalex.org/W3132661792","https://openalex.org/W3155703470","https://openalex.org/W3165390445","https://openalex.org/W3176538307","https://openalex.org/W4235169531","https://openalex.org/W4239510810","https://openalex.org/W4240541820","https://openalex.org/W4292893847"],"related_works":["https://openalex.org/W4388405611","https://openalex.org/W3208297503","https://openalex.org/W3131501806","https://openalex.org/W3119773509","https://openalex.org/W2964117661","https://openalex.org/W2889153461","https://openalex.org/W2786094008","https://openalex.org/W2619127353","https://openalex.org/W2510961579","https://openalex.org/W156213964"],"abstract_inverted_index":{"Feature":[0],"representation":[1,81,236],"and":[2,8,36,58,77,96,110,168,182,191,206,214,228],"discriminative":[3],"learning":[4,19,25],"are":[5,24],"proven":[6],"models":[7],"technologies":[9],"in":[10,117,127,225],"artificial":[11,217],"intelligence":[12,218],"fields;":[13],"however,":[14],"major":[15],"challenges":[16],"for":[17,51],"machine":[18],"on":[20,32,65,82,114,131,147,230],"large":[21],"biological":[22,87,238],"datasets":[23],"an":[26,45],"effective":[27],"model":[28,34,150,159],"with":[29,106],"mechanistical":[30],"explanation":[31],"the":[33,53,66,90,165,184,231],"determination":[35],"prediction.":[37],"To":[38],"satisfy":[39],"such":[40],"demands,":[41],"we":[42],"developed":[43],"Vec2image,":[44],"explainable":[46,216],"convolutional":[47],"neural":[48,75],"network":[49],"framework":[50],"characterizing":[52],"feature":[54,56,94,97,115,171,201],"engineering,":[55],"selection":[57,116],"classifier":[59],"training":[60],"that":[61,220],"is":[62,211],"mainly":[63],"based":[64],"collaboration":[67],"of":[68,85,233,237],"principal":[69],"component":[70],"coordinate":[71],"conversion,":[72],"deep":[73,239],"residual":[74],"networks":[76],"embedded":[78],"k-nearest":[79],"neighbor":[80],"pseudo":[83,91,234],"images":[84,92],"high-dimensional":[86],"data,":[88],"where":[89],"represent":[93],"measurements":[95],"associations":[98],"simultaneously.":[99],"Vec2image":[100,142,158,210],"has":[101],"achieved":[102],"better":[103],"performance":[104,146],"compared":[105],"other":[107],"popular":[108],"methods":[109],"illustrated":[111],"its":[112],"efficiency":[113],"cell":[118,166,185,188],"marker":[119],"identification":[120],"from":[121,203],"tissue-specific":[122],"single-cell":[123],"datasets.":[124],"In":[125],"particular,":[126],"a":[128,156,212],"case":[129],"study":[130],"type":[132],"2":[133],"diabetes":[134],"(T2D)":[135],"by":[136],"multiple":[137],"human":[138],"islet":[139],"scRNA-seq":[140],"datasets,":[141,154],"first":[143],"displayed":[144],"robust":[145],"T2D":[148,175,179,200],"classification":[149,227],"building":[151],"across":[152],"different":[153],"then":[155],"specific":[157],"was":[160],"trained":[161],"to":[162,174,197],"accurately":[163],"recognize":[164],"state":[167],"efficiently":[169],"rank":[170],"genes":[172,202],"relevant":[173],"which":[176],"uncovered":[177],"potential":[178],"cellular":[180],"pathogenesis;":[181],"next":[183],"activity":[186],"changes,":[187],"composition":[189],"imbalances":[190],"cell-cell":[192],"communication":[193],"dysfunctions":[194],"were":[195],"associated":[196],"our":[198],"finding":[199],"both":[204],"population-shared":[205],"individual-specific":[207],"perspectives.":[208],"Collectively,":[209],"new":[213],"efficient":[215],"methodology":[219],"can":[221],"be":[222],"widely":[223],"applied":[224],"human-readable":[226],"prediction":[229],"basis":[232],"image":[235],"sequencing":[240],"data.":[241]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4205571336","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":3}],"updated_date":"2025-01-06T14:21:16.689133","created_date":"2022-01-26"}