{"id":"https://openalex.org/W4391886413","doi":"https://doi.org/10.1088/2634-4386/ad29fc","title":"ReARTSim: an ReRAM ARray Transient Simulator with GPU optimized runtime acceleration","display_name":"ReARTSim: an ReRAM ARray Transient Simulator with GPU optimized runtime acceleration","publication_year":2024,"publication_date":"2024-02-16","ids":{"openalex":"https://openalex.org/W4391886413","doi":"https://doi.org/10.1088/2634-4386/ad29fc"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1088/2634-4386/ad29fc","pdf_url":"https://iopscience.iop.org/article/10.1088/2634-4386/ad29fc/pdf","source":{"id":"https://openalex.org/S4210212933","display_name":"Neuromorphic Computing and Engineering","issn_l":"2634-4386","issn":["2634-4386"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320083","host_organization_name":"IOP Publishing","host_organization_lineage":["https://openalex.org/P4310311669","https://openalex.org/P4310320083"],"host_organization_lineage_names":["Institute of Physics","IOP Publishing"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://iopscience.iop.org/article/10.1088/2634-4386/ad29fc/pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101574876","display_name":"Yu Sui","orcid":"https://orcid.org/0000-0002-4440-0706"},"institutions":[],"countries":["US"],"is_corresponding":true,"raw_author_name":"Yu Sui","raw_affiliation_strings":["Personal Researcher, 1127 Munich Terrace, Sunnyvale, Sunnyvale, California, 94089, UNITED STATES"],"affiliations":[{"raw_affiliation_string":"Personal Researcher, 1127 Munich Terrace, Sunnyvale, Sunnyvale, California, 94089, UNITED STATES","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100570463","display_name":"Tianhe Yu","orcid":null},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tianhe Yu","raw_affiliation_strings":["Personal Researcher, 1127 Munich Terrace, Sunnyvale, Sunnyvale, California, 94089, UNITED STATES"],"affiliations":[{"raw_affiliation_string":"Personal Researcher, 1127 Munich Terrace, Sunnyvale, Sunnyvale, California, 94089, UNITED STATES","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5078100774","display_name":"Shiming Song","orcid":"https://orcid.org/0000-0001-6021-9061"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Shiming Song","raw_affiliation_strings":["Personal Researcher, 1127 Munich Terrace, Sunnyvale, Sunnyvale, California, 94089, UNITED STATES"],"affiliations":[{"raw_affiliation_string":"Personal Researcher, 1127 Munich Terrace, Sunnyvale, Sunnyvale, California, 94089, UNITED STATES","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":["https://openalex.org/A5101574876"],"corresponding_institution_ids":[],"apc_list":{"value":2000,"currency":"GBP","value_usd":2453},"apc_paid":{"value":2000,"currency":"GBP","value_usd":2453},"fwci":0.648,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.731286,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":88},"biblio":{"volume":"4","issue":"1","first_page":"014006","last_page":"014006"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11005","display_name":"Radiation Effects in Electronics","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10472","display_name":"Semiconductor materials and devices","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/transient","display_name":"Transient (computer programming)","score":0.7256894}],"concepts":[{"id":"https://openalex.org/C117896860","wikidata":"https://www.wikidata.org/wiki/Q11376","display_name":"Acceleration","level":2,"score":0.78516513},{"id":"https://openalex.org/C2780799671","wikidata":"https://www.wikidata.org/wiki/Q17087362","display_name":"Transient (computer programming)","level":2,"score":0.7256894},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63221055},{"id":"https://openalex.org/C182019814","wikidata":"https://www.wikidata.org/wiki/Q1143830","display_name":"Resistive random-access memory","level":3,"score":0.5888277},{"id":"https://openalex.org/C459310","wikidata":"https://www.wikidata.org/wiki/Q117801","display_name":"Computational science","level":1,"score":0.46325383},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.4021048},{"id":"https://openalex.org/C121684516","wikidata":"https://www.wikidata.org/wiki/Q7600677","display_name":"Computer graphics (images)","level":1,"score":0.39702508},{"id":"https://openalex.org/C44154836","wikidata":"https://www.wikidata.org/wiki/Q45045","display_name":"Simulation","level":1,"score":0.36189622},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.21184227},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.13982028},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.11587769},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.113526136},{"id":"https://openalex.org/C74650414","wikidata":"https://www.wikidata.org/wiki/Q11397","display_name":"Classical mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1088/2634-4386/ad29fc","pdf_url":"https://iopscience.iop.org/article/10.1088/2634-4386/ad29fc/pdf","source":{"id":"https://openalex.org/S4210212933","display_name":"Neuromorphic Computing and Engineering","issn_l":"2634-4386","issn":["2634-4386"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320083","host_organization_name":"IOP Publishing","host_organization_lineage":["https://openalex.org/P4310311669","https://openalex.org/P4310320083"],"host_organization_lineage_names":["Institute of Physics","IOP Publishing"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1088/2634-4386/ad29fc","pdf_url":"https://iopscience.iop.org/article/10.1088/2634-4386/ad29fc/pdf","source":{"id":"https://openalex.org/S4210212933","display_name":"Neuromorphic Computing and Engineering","issn_l":"2634-4386","issn":["2634-4386"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320083","host_organization_name":"IOP Publishing","host_organization_lineage":["https://openalex.org/P4310311669","https://openalex.org/P4310320083"],"host_organization_lineage_names":["Institute of Physics","IOP Publishing"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","score":0.4,"id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":38,"referenced_works":["https://openalex.org/W1578783943","https://openalex.org/W1998385236","https://openalex.org/W2006785118","https://openalex.org/W2013055927","https://openalex.org/W2067242107","https://openalex.org/W2086601842","https://openalex.org/W2093122352","https://openalex.org/W2112796928","https://openalex.org/W2118980095","https://openalex.org/W2123151033","https://openalex.org/W2130336316","https://openalex.org/W2131329059","https://openalex.org/W2140914776","https://openalex.org/W2157061035","https://openalex.org/W2161330443","https://openalex.org/W2170029535","https://openalex.org/W2508602506","https://openalex.org/W2554303125","https://openalex.org/W2603064927","https://openalex.org/W2609852068","https://openalex.org/W2618530766","https://openalex.org/W2621179347","https://openalex.org/W2725215886","https://openalex.org/W2883480328","https://openalex.org/W2962914733","https://openalex.org/W2977767665","https://openalex.org/W3001684375","https://openalex.org/W3008135913","https://openalex.org/W3015250404","https://openalex.org/W3017900531","https://openalex.org/W3106114372","https://openalex.org/W3112740243","https://openalex.org/W3176606713","https://openalex.org/W3188913081","https://openalex.org/W4200037997","https://openalex.org/W4225259747","https://openalex.org/W4288618142","https://openalex.org/W4292121737"],"related_works":["https://openalex.org/W4396815615","https://openalex.org/W4381388454","https://openalex.org/W3161624601","https://openalex.org/W2952918855","https://openalex.org/W2545245183","https://openalex.org/W2350916061","https://openalex.org/W2078381924","https://openalex.org/W2054635671","https://openalex.org/W2017425642","https://openalex.org/W1970117475"],"abstract_inverted_index":{"Abstract":[0],"The":[1],"demand":[2],"for":[3,246,287,313],"computation":[4],"driven":[5],"by":[6,117,278],"machine":[7],"learning":[8,11],"and":[9,62,206,217,300,318],"deep":[10],"applications":[12],"has":[13,50],"experienced":[14],"exponential":[15],"growth":[16],"over":[17],"the":[18,52,96,126,174,178,231,265,280,295],"past":[19],"five":[20,98],"years":[21,99],"(Sevilla":[22],"et":[23,64,147,157],"al":[24,65,148,158],"2022":[25,26],"International":[27],"Joint":[28],"Conference":[29],"on":[30,303],"Neural":[31],"Networks":[32],"(IJCNN)":[33],"(IEEE)":[34],"pp":[35],"1-8),":[36],"leading":[37],"to":[38,93,128,192],"a":[39,69,83,118,243,252,258,304],"significant":[40],"surge":[41],"in":[42,86,95,122,167],"computing":[43,88,235,249],"hardware":[44,168,182],"products.":[45],"Meanwhile,":[46],"this":[47,165,272,276],"rapid":[48],"increase":[49,85],"exacerbated":[51],"memory":[53,123,138,259],"wall":[54],"bottleneck":[55],"within":[56,257],"mainstream":[57],"Von":[58],"Neumann":[59],"architectures":[60],"(Hennessy":[61],"Patterson":[63],"2011":[66],"Computer":[67],"architecture:":[68],"quantitative":[70],"approach":[71],"(Elsevier)).":[72],"For":[73],"instance,":[74],"NVIDIA":[75,107],"graphical":[76],"processing":[77],"units":[78],"(GPUs)":[79],"have":[80,141],"gained":[81],"nearly":[82],"200x":[84],"fp32":[87],"power,":[89],"transitioning":[90],"from":[91],"P100":[92,102],"H100":[94,108],"last":[97],"(NVIDIA":[100],"Tesla":[101],"2023":[103,112,201,213,226],"(":[104,113,202,214,227],"www.nvidia.com/en-us/data-center/tesla-p100/":[105],");":[106],"Tensor":[109],"Core":[110],"GPU":[111],"www.nvidia.com/en-us/data-center/h100/":[114],")),":[115,204,216],"accompanied":[116],"mere":[119],"8x":[120],"scaling":[121],"bandwidth.":[124],"Addressing":[125],"need":[127,245],"mitigate":[129],"data":[130],"movement":[131],"challenges,":[132],"process-in-memory":[133],"designs,":[134],"especially":[135,237],"resistive":[136],"random-access":[137],"(ReRAM)-based":[139],"solutions,":[140],"emerged":[142],"as":[143],"compelling":[144],"candidates":[145],"(Verma":[146],"2019":[149],"IEEE":[150,161],"Solid-State":[151],"Circuits":[152],"Mag.":[153],"11":[154],"43\u201355;":[155],"Sze":[156],"2017":[159],"Proc.":[160],"105":[162],"2295\u2013329).":[163],"However,":[164],"shift":[166],"design":[169,175,183,186,232,269],"poses":[170],"distinct":[171],"challenges":[172],"at":[173],"phase,":[176],"given":[177],"limitations":[179],"of":[180,233,255,267,297],"existing":[181],"tools.":[184,270],"Popular":[185],"tools":[187,198,211],"today":[188],"can":[189],"be":[190],"used":[191],"characterize":[193],"analog":[194,298],"behavior":[195,208,220,250,302],"via":[196],"SPICE":[197],"(PrimeSim":[199],"HSPICE":[200],"www.synopsys.com/implementation-and-signoff/ams-simulation/primesim-hspice.html":[203],"system":[205],"logical":[207],"using":[209],"Verilog":[210],"(VCS":[212],"www.synopsys.com/verification/simulation/vcs.html":[215],"mixed":[218],"signal":[219],"through":[221],"toolbox":[222],"like":[223],"CPPSIM":[224],"(Meninger":[225],"www.cppsim.org/Tutorials/wideband_fracn_tutorial.pdf":[228],")).":[229],"Nonetheless,":[230],"in-memory":[234],"systems,":[236],"those":[238],"involving":[239],"non-CMOS":[240],"devices,":[241],"presents":[242],"unique":[244],"characterizing":[247],"mixed-signal":[248,284],"across":[251],"large":[253,305],"number":[254],"cells":[256],"bank.":[260],"This":[261,292],"requirement":[262],"falls":[263],"beyond":[264],"scope":[266],"conventional":[268],"In":[271],"paper,":[273],"we":[274],"bridge":[275],"gap":[277],"introducing":[279],"ReARTSim":[281],"framework\u2014a":[282],"GPU-accelerated":[283],"transient":[285],"simulator":[286],"analyzing":[288],"ReRAM":[289],"crossbar":[290],"array.":[291],"tool":[293],"facilitates":[294],"characterization":[296],"circuit":[299],"device":[301],"scale,":[306],"while":[307],"also":[308],"providing":[309],"enhanced":[310],"simulation":[311],"performance":[312],"complex":[314],"algorithm":[315],"analysis,":[316],"sign-off,":[317],"verification.":[319]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391886413","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-17T16:34:31.811551","created_date":"2024-02-17"}