{"id":"https://openalex.org/W3208681360","doi":"https://doi.org/10.1088/2632-2153/ac7d3b","title":"Deep learning via message passing algorithms based on belief propagation","display_name":"Deep learning via message passing algorithms based on belief propagation","publication_year":2022,"publication_date":"2022-06-29","ids":{"openalex":"https://openalex.org/W3208681360","doi":"https://doi.org/10.1088/2632-2153/ac7d3b","mag":"3208681360"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1088/2632-2153/ac7d3b","pdf_url":null,"source":{"id":"https://openalex.org/S4210200687","display_name":"Machine Learning Science and Technology","issn_l":"2632-2153","issn":["2632-2153"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320083","host_organization_name":"IOP Publishing","host_organization_lineage":["https://openalex.org/P4310311669","https://openalex.org/P4310320083"],"host_organization_lineage_names":["Institute of Physics","IOP Publishing"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://doi.org/10.1088/2632-2153/ac7d3b","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5015710172","display_name":"Carlo Lucibello","orcid":"https://orcid.org/0000-0003-0837-9783"},"institutions":[{"id":"https://openalex.org/I71209653","display_name":"Bocconi University","ror":"https://ror.org/05crjpb27","country_code":"IT","type":"funder","lineage":["https://openalex.org/I71209653"]}],"countries":["IT"],"is_corresponding":true,"raw_author_name":"Carlo Lucibello","raw_affiliation_strings":["Institute for Data Science and Analytics, Bocconi University, Milano, Italy"],"affiliations":[{"raw_affiliation_string":"Institute for Data Science and Analytics, Bocconi University, Milano, Italy","institution_ids":["https://openalex.org/I71209653"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035460406","display_name":"Fabrizio Pittorino","orcid":"https://orcid.org/0000-0002-1919-6141"},"institutions":[{"id":"https://openalex.org/I71209653","display_name":"Bocconi University","ror":"https://ror.org/05crjpb27","country_code":"IT","type":"funder","lineage":["https://openalex.org/I71209653"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Fabrizio Pittorino","raw_affiliation_strings":["Institute for Data Science and Analytics, Bocconi University, Milano, Italy"],"affiliations":[{"raw_affiliation_string":"Institute for Data Science and Analytics, Bocconi University, Milano, Italy","institution_ids":["https://openalex.org/I71209653"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014900294","display_name":"Gabriele Perugini","orcid":null},"institutions":[{"id":"https://openalex.org/I177477856","display_name":"Polytechnic University of Turin","ror":"https://ror.org/00bgk9508","country_code":"IT","type":"funder","lineage":["https://openalex.org/I177477856"]},{"id":"https://openalex.org/I71209653","display_name":"Bocconi University","ror":"https://ror.org/05crjpb27","country_code":"IT","type":"funder","lineage":["https://openalex.org/I71209653"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Gabriele Perugini","raw_affiliation_strings":["Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy","Institute for Data Science and Analytics, Bocconi University, Milano, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy","institution_ids":["https://openalex.org/I177477856"]},{"raw_affiliation_string":"Institute for Data Science and Analytics, Bocconi University, Milano, Italy","institution_ids":["https://openalex.org/I71209653"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5041685522","display_name":"Riccardo Zecchina","orcid":"https://orcid.org/0000-0002-1221-5207"},"institutions":[{"id":"https://openalex.org/I71209653","display_name":"Bocconi University","ror":"https://ror.org/05crjpb27","country_code":"IT","type":"funder","lineage":["https://openalex.org/I71209653"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Riccardo Zecchina","raw_affiliation_strings":["Institute for Data Science and Analytics, Bocconi University, Milano, Italy"],"affiliations":[{"raw_affiliation_string":"Institute for Data Science and Analytics, Bocconi University, Milano, Italy","institution_ids":["https://openalex.org/I71209653"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5015710172"],"corresponding_institution_ids":["https://openalex.org/I71209653"],"apc_list":{"value":1600,"currency":"GBP","value_usd":1962},"apc_paid":{"value":1600,"currency":"GBP","value_usd":1962},"fwci":1.124,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":8,"citation_normalized_percentile":{"value":0.803304,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":89},"biblio":{"volume":"3","issue":"3","first_page":"035005","last_page":"035005"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/belief-propagation","display_name":"Belief Propagation","score":0.87684166},{"id":"https://openalex.org/keywords/heuristics","display_name":"Heuristics","score":0.6464946},{"id":"https://openalex.org/keywords/approximate-inference","display_name":"Approximate inference","score":0.6319652},{"id":"https://openalex.org/keywords/expectation-propagation","display_name":"Expectation propagation","score":0.5864419},{"id":"https://openalex.org/keywords/graphical-model","display_name":"Graphical model","score":0.51902115},{"id":"https://openalex.org/keywords/stochastic-gradient-descent","display_name":"Stochastic Gradient Descent","score":0.48894918}],"concepts":[{"id":"https://openalex.org/C152948882","wikidata":"https://www.wikidata.org/wiki/Q4060686","display_name":"Belief propagation","level":3,"score":0.87684166},{"id":"https://openalex.org/C854659","wikidata":"https://www.wikidata.org/wiki/Q1859284","display_name":"Message passing","level":2,"score":0.81142807},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7339791},{"id":"https://openalex.org/C127705205","wikidata":"https://www.wikidata.org/wiki/Q5748245","display_name":"Heuristics","level":2,"score":0.6464946},{"id":"https://openalex.org/C2777472644","wikidata":"https://www.wikidata.org/wiki/Q16968992","display_name":"Approximate inference","level":3,"score":0.6319652},{"id":"https://openalex.org/C2779363554","wikidata":"https://www.wikidata.org/wiki/Q5420835","display_name":"Expectation propagation","level":4,"score":0.5864419},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5428803},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.5422209},{"id":"https://openalex.org/C155846161","wikidata":"https://www.wikidata.org/wiki/Q1143367","display_name":"Graphical model","level":2,"score":0.51902115},{"id":"https://openalex.org/C206688291","wikidata":"https://www.wikidata.org/wiki/Q7617819","display_name":"Stochastic gradient descent","level":3,"score":0.48894918},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.47874779},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.47429138},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4710883},{"id":"https://openalex.org/C160234255","wikidata":"https://www.wikidata.org/wiki/Q812535","display_name":"Bayesian inference","level":3,"score":0.47029257},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.459619},{"id":"https://openalex.org/C153258448","wikidata":"https://www.wikidata.org/wiki/Q1199743","display_name":"Gradient descent","level":3,"score":0.4463031},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.44617045},{"id":"https://openalex.org/C33724603","wikidata":"https://www.wikidata.org/wiki/Q812540","display_name":"Bayesian network","level":2,"score":0.42976448},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.35723484},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.2819438},{"id":"https://openalex.org/C57273362","wikidata":"https://www.wikidata.org/wiki/Q576722","display_name":"Decoding methods","level":2,"score":0.12405923},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.097711414},{"id":"https://openalex.org/C61326573","wikidata":"https://www.wikidata.org/wiki/Q1496376","display_name":"Gaussian process","level":3,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1088/2632-2153/ac7d3b","pdf_url":null,"source":{"id":"https://openalex.org/S4210200687","display_name":"Machine Learning Science and Technology","issn_l":"2632-2153","issn":["2632-2153"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320083","host_organization_name":"IOP Publishing","host_organization_lineage":["https://openalex.org/P4310311669","https://openalex.org/P4310320083"],"host_organization_lineage_names":["Institute of Physics","IOP Publishing"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2110.14583","pdf_url":"https://arxiv.org/pdf/2110.14583","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://hdl.handle.net/11311/1252419","pdf_url":"https://re.public.polimi.it/bitstream/11311/1252419/2/11311-1252419_Pittorino.pdf","source":{"id":"https://openalex.org/S4306400312","display_name":"Virtual Community of Pathological Anatomy (University of Castilla La Mancha)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I79189158","host_organization_name":"University of Castilla-La Mancha","host_organization_lineage":["https://openalex.org/I79189158"],"host_organization_lineage_names":["University of Castilla-La Mancha"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2110.14583","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1088/2632-2153/ac7d3b","pdf_url":null,"source":{"id":"https://openalex.org/S4210200687","display_name":"Machine Learning Science and Technology","issn_l":"2632-2153","issn":["2632-2153"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320083","host_organization_name":"IOP Publishing","host_organization_lineage":["https://openalex.org/P4310311669","https://openalex.org/P4310320083"],"host_organization_lineage_names":["Institute of Physics","IOP Publishing"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W3208681360"],"referenced_works_count":79,"referenced_works":["https://openalex.org/W121410702","https://openalex.org/W1510028821","https://openalex.org/W1533861849","https://openalex.org/W1682403713","https://openalex.org/W1719489212","https://openalex.org/W1934021597","https://openalex.org/W1976278894","https://openalex.org/W2019599312","https://openalex.org/W2036759514","https://openalex.org/W2082029531","https://openalex.org/W2085138324","https://openalex.org/W2113487168","https://openalex.org/W2113839990","https://openalex.org/W2116522068","https://openalex.org/W2128765501","https://openalex.org/W2129386380","https://openalex.org/W2151781750","https://openalex.org/W2156094048","https://openalex.org/W2161758346","https://openalex.org/W2211979669","https://openalex.org/W2262347687","https://openalex.org/W2267635276","https://openalex.org/W2482262045","https://openalex.org/W2490183153","https://openalex.org/W2517648041","https://openalex.org/W2550815077","https://openalex.org/W2552194003","https://openalex.org/W2560647685","https://openalex.org/W2566505556","https://openalex.org/W2582278104","https://openalex.org/W2723734710","https://openalex.org/W2737492962","https://openalex.org/W2777662428","https://openalex.org/W2788838181","https://openalex.org/W2799197246","https://openalex.org/W2803439868","https://openalex.org/W2890963110","https://openalex.org/W2918745211","https://openalex.org/W2945463326","https://openalex.org/W2950117601","https://openalex.org/W2963384892","https://openalex.org/W2963588172","https://openalex.org/W2964067969","https://openalex.org/W2992043355","https://openalex.org/W2994588524","https://openalex.org/W2994848047","https://openalex.org/W2995529574","https://openalex.org/W2998438489","https://openalex.org/W3009052662","https://openalex.org/W3015632539","https://openalex.org/W3034663399","https://openalex.org/W3038228403","https://openalex.org/W3039347249","https://openalex.org/W3087194612","https://openalex.org/W3093329015","https://openalex.org/W3095162319","https://openalex.org/W3098332409","https://openalex.org/W3099499532","https://openalex.org/W3103332290","https://openalex.org/W3104455692","https://openalex.org/W3106214974","https://openalex.org/W3107728769","https://openalex.org/W3121355058","https://openalex.org/W3127844431","https://openalex.org/W3130584495","https://openalex.org/W3137329786","https://openalex.org/W3152713649","https://openalex.org/W3158218720","https://openalex.org/W3168638887","https://openalex.org/W3206621305","https://openalex.org/W4205795626","https://openalex.org/W4213083005","https://openalex.org/W4256035642","https://openalex.org/W4286856918","https://openalex.org/W4295262505","https://openalex.org/W4297813615","https://openalex.org/W4299971819","https://openalex.org/W4300188436","https://openalex.org/W4301163820"],"related_works":["https://openalex.org/W4286892381","https://openalex.org/W3208681360","https://openalex.org/W3104486738","https://openalex.org/W2978729728","https://openalex.org/W2896991873","https://openalex.org/W2612895134","https://openalex.org/W2530325458","https://openalex.org/W2163364417","https://openalex.org/W2129340397","https://openalex.org/W2129270363"],"abstract_inverted_index":{"Message-passing":[0],"algorithms":[1,84,97,127],"based":[2],"on":[3,18,33,57,77],"the":[4,59,130,133],"Belief":[5],"Propagation":[6],"(BP)":[7],"equations":[8],"constitute":[9],"a":[10,79,86],"well-known":[11],"distributed":[12],"computational":[13],"scheme.":[14],"It":[15],"is":[16,49,65],"exact":[17],"tree-like":[19],"graphical":[20],"models":[21],"and":[22,72,108,117],"has":[23],"also":[24],"proven":[25],"to":[26,39,44,74,113,121,128,137],"be":[27],"effective":[28],"in":[29],"many":[30],"problems":[31],"defined":[32],"graphs":[34],"with":[35,85,105,110],"loops":[36],"(from":[37],"inference":[38],"optimization,":[40],"from":[41,52],"signal":[42],"processing":[43],"clustering).":[45],"The":[46],"BP-based":[47,82],"scheme":[48],"fundamentally":[50],"different":[51],"stochastic":[53],"gradient":[54],"descent":[55],"(SGD),":[56],"which":[58],"current":[60],"success":[61],"of":[62,81,100,132],"deep":[63],"networks":[64,104],"based.":[66],"In":[67],"this":[68],"paper,":[69],"we":[70],"present":[71],"adapt":[73],"mini-batch":[75],"training":[76,101],"GPUs":[78],"family":[80],"message-passing":[83],"reinforcement":[87],"field":[88],"that":[89,142],"biases":[90],"distributions":[91],"towards":[92],"locally":[93],"entropic":[94],"solutions.":[95,148],"These":[96],"are":[98,118],"capable":[99],"multi-layer":[102],"neural":[103],"discrete":[106],"weights":[107,134],"activations":[109],"performance":[111],"comparable":[112],"SGD-inspired":[114],"heuristics":[115],"(BinaryNet)":[116],"naturally":[119],"well-adapted":[120],"continual":[122],"learning.":[123],"Furthermore,":[124],"using":[125],"these":[126],"estimate":[129],"marginals":[131],"allows":[135],"us":[136],"make":[138],"approximate":[139],"Bayesian":[140],"predictions":[141],"have":[143],"higher":[144],"accuracy":[145],"than":[146],"point-wise":[147]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3208681360","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1}],"updated_date":"2025-04-18T05:44:51.228405","created_date":"2021-11-08"}