{"id":"https://openalex.org/W3176584175","doi":"https://doi.org/10.1080/21681163.2021.1944914","title":"Computer-aided automatic approach for denoising of magnetic resonance images","display_name":"Computer-aided automatic approach for denoising of magnetic resonance images","publication_year":2021,"publication_date":"2021-06-28","ids":{"openalex":"https://openalex.org/W3176584175","doi":"https://doi.org/10.1080/21681163.2021.1944914","mag":"3176584175"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/21681163.2021.1944914","pdf_url":null,"source":{"id":"https://openalex.org/S2764763012","display_name":"Computer Methods in Biomechanics and Biomedical Engineering Imaging & Visualization","issn_l":"2168-1163","issn":["2168-1163","2168-1171"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103129436","display_name":"Sumit Tripathi","orcid":"https://orcid.org/0000-0002-7924-7246"},"institutions":[{"id":"https://openalex.org/I91357014","display_name":"Banaras Hindu University","ror":"https://ror.org/04cdn2797","country_code":"IN","type":"education","lineage":["https://openalex.org/I91357014"]}],"countries":["IN"],"is_corresponding":true,"raw_author_name":"Sumit Tripathi","raw_affiliation_strings":["School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India"],"affiliations":[{"raw_affiliation_string":"School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India","institution_ids":["https://openalex.org/I91357014"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100437499","display_name":"Neeraj Sharma","orcid":"https://orcid.org/0000-0002-6965-4833"},"institutions":[{"id":"https://openalex.org/I91357014","display_name":"Banaras Hindu University","ror":"https://ror.org/04cdn2797","country_code":"IN","type":"education","lineage":["https://openalex.org/I91357014"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Neeraj Sharma","raw_affiliation_strings":["School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India"],"affiliations":[{"raw_affiliation_string":"School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India","institution_ids":["https://openalex.org/I91357014"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5103129436"],"corresponding_institution_ids":["https://openalex.org/I91357014"],"apc_list":null,"apc_paid":null,"fwci":1.225,"has_fulltext":false,"cited_by_count":12,"citation_normalized_percentile":{"value":0.719965,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":"9","issue":"6","first_page":"707","last_page":"716"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9914,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9771,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.7446748},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.66285014}],"concepts":[{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.7446748},{"id":"https://openalex.org/C163294075","wikidata":"https://www.wikidata.org/wiki/Q581861","display_name":"Noise reduction","level":2,"score":0.7114965},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70633304},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6900624},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.66285014},{"id":"https://openalex.org/C2777735758","wikidata":"https://www.wikidata.org/wiki/Q817765","display_name":"Path (computing)","level":2,"score":0.5575206},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.551532},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.534104},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.33325717},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.32059777},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.18456921},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/21681163.2021.1944914","pdf_url":null,"source":{"id":"https://openalex.org/S2764763012","display_name":"Computer Methods in Biomechanics and Biomedical Engineering Imaging & Visualization","issn_l":"2168-1163","issn":["2168-1163","2168-1171"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.75,"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W1794468867","https://openalex.org/W1899329334","https://openalex.org/W1975752945","https://openalex.org/W1984083252","https://openalex.org/W1998524910","https://openalex.org/W2015430640","https://openalex.org/W2037227137","https://openalex.org/W2048695508","https://openalex.org/W2059700429","https://openalex.org/W2082308787","https://openalex.org/W2097073572","https://openalex.org/W2097117768","https://openalex.org/W2107878631","https://openalex.org/W2109530652","https://openalex.org/W2119823327","https://openalex.org/W2160547390","https://openalex.org/W2193325189","https://openalex.org/W2362931289","https://openalex.org/W2398729036","https://openalex.org/W2490648105","https://openalex.org/W2508457857","https://openalex.org/W2519601569","https://openalex.org/W2541690585","https://openalex.org/W2577232348","https://openalex.org/W2618530766","https://openalex.org/W2624413595","https://openalex.org/W2766341514","https://openalex.org/W2769172588","https://openalex.org/W2789876780","https://openalex.org/W2791749046","https://openalex.org/W2796384729","https://openalex.org/W2888184648","https://openalex.org/W2899675781","https://openalex.org/W2904016341","https://openalex.org/W2948743958","https://openalex.org/W2963499307","https://openalex.org/W2964313776","https://openalex.org/W2969585684","https://openalex.org/W3098225252","https://openalex.org/W3134727298","https://openalex.org/W3154498346"],"related_works":["https://openalex.org/W4205463238","https://openalex.org/W3103844505","https://openalex.org/W2981954115","https://openalex.org/W2965546495","https://openalex.org/W2761785940","https://openalex.org/W259157601","https://openalex.org/W2521627374","https://openalex.org/W2153315159","https://openalex.org/W2110523656","https://openalex.org/W1482209366"],"abstract_inverted_index":{"This":[0],"paper":[1],"proposes":[2],"a":[3,169],"dual":[4],"path":[5,47],"deep":[6],"convolution":[7,38,56],"network":[8,50,62,84,92],"based":[9],"on":[10,93],"discriminative":[11],"learning":[12],"for":[13,134,149,157],"denoising":[14],"MR":[15,20],"images.":[16],"The":[17,30,60,83,102,115,137],"noise":[18,71],"in":[19,24,43,107,164,184],"images":[21,68,154],"causes":[22],"problems":[23],"identifying":[25],"the":[26,49,67,91,99,108,112,123,127,141,144,147,153,159,162,165],"regions":[27],"of":[28,48,69,140,146,161,172],"interest.":[29],"proposed":[31,61,113],"approach":[32],"is":[33,51],"incorporated":[34],"using":[35,53],"depthwise":[36,54],"separable":[37,55],"and":[39,57,73,126,168,178,186],"local":[40],"response":[41],"normalisation":[42],"one":[44],"path.":[45],"Another":[46],"implemented":[52],"group":[58],"normalisation.":[59],"was":[63,120,182],"used":[64],"to":[65,131],"denoise":[66],"different":[70],"levels,":[72],"it":[74],"yields":[75],"better":[76],"performance":[77],"as":[78,96],"compared":[79],"with":[80],"various":[81],"networks.":[82],"produces":[85],"clinically":[86],"relevant":[87],"results":[88,109,128,142,148,163],"without":[89],"retraining":[90],"other":[94],"datasets":[95],"depicted":[97],"by":[98,111,122],"evaluation":[100,103],"metrics.":[101],"metrics":[104],"improved":[105],"remarkably":[106],"obtained":[110],"model.":[114],"additional":[116],"external":[117],"clinical":[118],"validation":[119],"performed":[121],"senior":[124],"radiologists,":[125],"were":[129,155],"found":[130],"be":[132],"satisfactory":[133],"medical":[135,150],"diagnosis.":[136],"statistical":[138],"analysis":[139],"proves":[143],"suitability":[145],"analysis.":[151],"Further,":[152],"segmented":[156],"checking":[158],"applicability":[160],"biomedical":[166],"domain":[167],"remarkable":[170],"improvement":[171],"about":[173],"(7":[174],"\u00b1":[175,180],"0.03)":[176],"%":[177],"(6.5":[179],"0.02)":[181],"observed":[183],"mIoU":[185],"BF":[187],"score.":[188]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3176584175","counts_by_year":[{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":2}],"updated_date":"2024-12-09T22:34:32.372242","created_date":"2021-07-05"}