{"id":"https://openalex.org/W2065696385","doi":"https://doi.org/10.1080/13658816.2014.938078","title":"GRASP-UTS: an algorithm for unsupervised trajectory segmentation","display_name":"GRASP-UTS: an algorithm for unsupervised trajectory segmentation","publication_year":2014,"publication_date":"2014-07-14","ids":{"openalex":"https://openalex.org/W2065696385","doi":"https://doi.org/10.1080/13658816.2014.938078","mag":"2065696385"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/13658816.2014.938078","pdf_url":null,"source":{"id":"https://openalex.org/S111872859","display_name":"International Journal of Geographical Information Science","issn_l":"1365-8816","issn":["1365-8816","1365-8824"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5040197161","display_name":"Am\u00edlcar Soares","orcid":"https://orcid.org/0000-0001-5957-3805"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":true,"raw_author_name":"Am\u00edlcar Soares J\u00fanior","raw_affiliation_strings":["Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005252252","display_name":"Bruno Moreno","orcid":"https://orcid.org/0000-0002-7166-2090"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Bruno Neiva Moreno","raw_affiliation_strings":["Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012491524","display_name":"Val\u00e9ria Ces\u00e1rio Times","orcid":"https://orcid.org/0000-0002-0398-6173"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Val\u00e9ria Ces\u00e1rio Times","raw_affiliation_strings":["Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042893723","display_name":"Stan Matwin","orcid":"https://orcid.org/0000-0001-6629-8434"},"institutions":[{"id":"https://openalex.org/I129902397","display_name":"Dalhousie University","ror":"https://ror.org/01e6qks80","country_code":"CA","type":"education","lineage":["https://openalex.org/I129902397"]},{"id":"https://openalex.org/I99542240","display_name":"Polish Academy of Sciences","ror":"https://ror.org/01dr6c206","country_code":"PL","type":"government","lineage":["https://openalex.org/I99542240"]}],"countries":["CA","PL"],"is_corresponding":false,"raw_author_name":"Stan Matwin","raw_affiliation_strings":["Faculty of Computer Science, Dalhousie University, Halifax, Canada","Polish Academy of Sciences, Institute for Computer Science, Warsaw, Poland"],"affiliations":[{"raw_affiliation_string":"Faculty of Computer Science, Dalhousie University, Halifax, Canada","institution_ids":["https://openalex.org/I129902397"]},{"raw_affiliation_string":"Polish Academy of Sciences, Institute for Computer Science, Warsaw, Poland","institution_ids":["https://openalex.org/I99542240"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5051878482","display_name":"Luc\u00eddio dos Anjos Formiga Cabral","orcid":"https://orcid.org/0000-0002-6117-5571"},"institutions":[{"id":"https://openalex.org/I169045520","display_name":"Universidade Federal da Para\u00edba","ror":"https://ror.org/00p9vpz11","country_code":"BR","type":"education","lineage":["https://openalex.org/I169045520"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Luc\u00eddio dos Anjos Formiga Cabral","raw_affiliation_strings":["Centro de Inform\u00e1tica, Universidade Federal da Para\u00edba, Jo\u00e3o Pessoa, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica, Universidade Federal da Para\u00edba, Jo\u00e3o Pessoa, Brazil","institution_ids":["https://openalex.org/I169045520"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":["https://openalex.org/A5040197161"],"corresponding_institution_ids":["https://openalex.org/I25112270"],"apc_list":null,"apc_paid":null,"fwci":0.837,"has_fulltext":false,"cited_by_count":48,"citation_normalized_percentile":{"value":0.917525,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"29","issue":"1","first_page":"46","last_page":"68"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13282","display_name":"Automated Road and Building Extraction","score":0.9806,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9781,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/minimum-description-length","display_name":"Minimum description length","score":0.7802185},{"id":"https://openalex.org/keywords/market-segmentation","display_name":"Market Segmentation","score":0.48985}],"concepts":[{"id":"https://openalex.org/C171268870","wikidata":"https://www.wikidata.org/wiki/Q1486676","display_name":"GRASP","level":2,"score":0.8670538},{"id":"https://openalex.org/C87465248","wikidata":"https://www.wikidata.org/wiki/Q1417790","display_name":"Minimum description length","level":2,"score":0.7802185},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7627686},{"id":"https://openalex.org/C13662910","wikidata":"https://www.wikidata.org/wiki/Q193139","display_name":"Trajectory","level":2,"score":0.7186331},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6248926},{"id":"https://openalex.org/C142259097","wikidata":"https://www.wikidata.org/wiki/Q5891314","display_name":"Homogeneity (statistics)","level":2,"score":0.5775954},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5538569},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.4943447},{"id":"https://openalex.org/C125308379","wikidata":"https://www.wikidata.org/wiki/Q363057","display_name":"Market segmentation","level":2,"score":0.48985},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.45760867},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.42448723},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.37346333},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.34829482},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.19523013},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C162853370","wikidata":"https://www.wikidata.org/wiki/Q39809","display_name":"Marketing","level":1,"score":0.0},{"id":"https://openalex.org/C1276947","wikidata":"https://www.wikidata.org/wiki/Q333","display_name":"Astronomy","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/13658816.2014.938078","pdf_url":null,"source":{"id":"https://openalex.org/S111872859","display_name":"International Journal of Geographical Information Science","issn_l":"1365-8816","issn":["1365-8816","1365-8824"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities","score":0.57}],"grants":[{"funder":"https://openalex.org/F4320322025","funder_display_name":"Conselho Nacional de Desenvolvimento Cient\u00edfico e Tecnol\u00f3gico","award_id":"SWE/CSF 238212/2012-2"},{"funder":"https://openalex.org/F4320334593","funder_display_name":"Natural Sciences and Engineering Research Council of Canada","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W136934132","https://openalex.org/W1553780760","https://openalex.org/W1559632079","https://openalex.org/W1589632093","https://openalex.org/W1969301519","https://openalex.org/W1981398125","https://openalex.org/W2021348813","https://openalex.org/W2047348678","https://openalex.org/W2054658115","https://openalex.org/W2060346657","https://openalex.org/W2086961842","https://openalex.org/W2090275183","https://openalex.org/W2090702599","https://openalex.org/W2096558133","https://openalex.org/W2097357452","https://openalex.org/W2104434203","https://openalex.org/W2106858492","https://openalex.org/W2113628851","https://openalex.org/W2115317849","https://openalex.org/W2116013313","https://openalex.org/W2127218421","https://openalex.org/W2133123111","https://openalex.org/W2140243124","https://openalex.org/W2160784155","https://openalex.org/W2472923625","https://openalex.org/W2997776631","https://openalex.org/W36449009","https://openalex.org/W370143576","https://openalex.org/W4253654031","https://openalex.org/W4385400191"],"related_works":["https://openalex.org/W4387804363","https://openalex.org/W2743859443","https://openalex.org/W2477150073","https://openalex.org/W2326995835","https://openalex.org/W2168652261","https://openalex.org/W2163296013","https://openalex.org/W2123347777","https://openalex.org/W2059402478","https://openalex.org/W2019547100","https://openalex.org/W165915117"],"abstract_inverted_index":{"An":[0],"important":[1],"problem":[2],"in":[3,11,38,60,79,122],"the":[4,50,61,66,74,77,84,111],"knowledge":[5],"discovery":[6],"of":[7,73,115],"trajectories":[8,32,144],"is":[9,103],"segmentation":[10,18],"subparts":[12],"(subtrajectories).":[13],"Existing":[14],"algorithms":[15],"for":[16,97],"trajectory":[17,62,155],"generally":[19],"use":[20],"explicit":[21,41],"criteria":[22,42],"to":[23,132],"create":[24],"segments.":[25],"In":[26],"this":[27],"article,":[28],"we":[29,48,87],"propose":[30,88],"segmenting":[31],"using":[33,126],"a":[34,104],"novel,":[35],"unsupervised":[36],"approach,":[37],"which":[39,56,102],"no":[40],"are":[43],"predetermined.":[44],"To":[45],"achieve":[46],"this,":[47],"apply":[49],"Minimum":[51],"Description":[52],"Length":[53],"(MDL)":[54],"principle,":[55],"can":[57],"measure":[58],"homogeneity":[59,85],"data":[63],"by":[64,109,148],"computing":[65,149],"similarities":[67,150],"between":[68,151],"landmarks":[69,152],"(i.e.":[70],"representative":[71],"points":[72,78],"trajectory)":[75],"and":[76,113,129,153],"their":[80],"neighborhood.":[81],"Based":[82],"on":[83],"measurements,":[86],"an":[89],"algorithm":[90],"named":[91],"Greedy":[92],"Randomized":[93],"Adaptive":[94],"Search":[95],"Procedure":[96],"Unsupervised":[98],"Trajectory":[99],"Segmentation":[100],"(GRASP-UTS),":[101],"meta-heuristic":[105],"that":[106,139],"builds":[107],"segments":[108],"modifying":[110],"number":[112],"positions":[114],"landmarks.":[116],"We":[117],"perform":[118],"experiments":[119],"with":[120],"GRASP-UTS":[121,140],"two":[123],"real-world":[124],"datasets,":[125],"segment":[127],"purity":[128],"coverage":[130],"metrics":[131],"evaluate":[133],"its":[134],"efficiency.":[135],"Experimental":[136],"results":[137],"demonstrate":[138],"correctly":[141],"segmented":[142],"sample":[143],"without":[145],"predetermined":[146],"criteria,":[147],"other":[154],"points.":[156]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2065696385","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":9},{"year":2022,"cited_by_count":8},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":10},{"year":2019,"cited_by_count":5},{"year":2018,"cited_by_count":7},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":2}],"updated_date":"2024-12-07T09:56:25.249077","created_date":"2016-06-24"}