{"id":"https://openalex.org/W3211341997","doi":"https://doi.org/10.1080/10618600.2021.2000873","title":"Graphical Influence Diagnostics for Changepoint Models","display_name":"Graphical Influence Diagnostics for Changepoint Models","publication_year":2021,"publication_date":"2021-11-08","ids":{"openalex":"https://openalex.org/W3211341997","doi":"https://doi.org/10.1080/10618600.2021.2000873","mag":"3211341997"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1080/10618600.2021.2000873","pdf_url":"https://www.tandfonline.com/doi/pdf/10.1080/10618600.2021.2000873?needAccess=true","source":{"id":"https://openalex.org/S76159266","display_name":"Journal of Computational and Graphical Statistics","issn_l":"1061-8600","issn":["1061-8600","1537-2715"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://www.tandfonline.com/doi/pdf/10.1080/10618600.2021.2000873?needAccess=true","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5048951079","display_name":"Ines Wilms","orcid":"https://orcid.org/0000-0003-3269-4601"},"institutions":[{"id":"https://openalex.org/I34352273","display_name":"Maastricht University","ror":"https://ror.org/02jz4aj89","country_code":"NL","type":"funder","lineage":["https://openalex.org/I34352273"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Ines Wilms","raw_affiliation_strings":["Department of Quantitative Economics, Maastricht University, Maastricht, Netherlands"],"affiliations":[{"raw_affiliation_string":"Department of Quantitative Economics, Maastricht University, Maastricht, Netherlands","institution_ids":["https://openalex.org/I34352273"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075851671","display_name":"Rebecca Killick","orcid":"https://orcid.org/0000-0003-0583-3960"},"institutions":[{"id":"https://openalex.org/I67415387","display_name":"Lancaster University","ror":"https://ror.org/04f2nsd36","country_code":"GB","type":"funder","lineage":["https://openalex.org/I67415387"]}],"countries":["GB"],"is_corresponding":true,"raw_author_name":"Rebecca Killick","raw_affiliation_strings":["Department of Mathematics and Statistics, Lancaster University, Lancaster, UK"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics and Statistics, Lancaster University, Lancaster, UK","institution_ids":["https://openalex.org/I67415387"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5051412963","display_name":"David S. Matteson","orcid":"https://orcid.org/0000-0002-2674-0387"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"funder","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"David S. Matteson","raw_affiliation_strings":["Department of Statistics and Data Science, Cornell University, Ithaca, NY"],"affiliations":[{"raw_affiliation_string":"Department of Statistics and Data Science, Cornell University, Ithaca, NY","institution_ids":["https://openalex.org/I205783295"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5075851671"],"corresponding_institution_ids":["https://openalex.org/I67415387"],"apc_list":null,"apc_paid":null,"fwci":0.15,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.426338,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":56,"max":66},"biblio":{"volume":"31","issue":"3","first_page":"753","last_page":"765"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12659","display_name":"Innovation Diffusion and Forecasting","score":0.9882,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T12659","display_name":"Innovation Diffusion and Forecasting","score":0.9882,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11235","display_name":"Statistical Methods in Clinical Trials","score":0.9735,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9669,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/graphical-model","display_name":"Graphical model","score":0.66754735},{"id":"https://openalex.org/keywords/graphical-display","display_name":"Graphical display","score":0.49052638}],"concepts":[{"id":"https://openalex.org/C155846161","wikidata":"https://www.wikidata.org/wiki/Q1143367","display_name":"Graphical model","level":2,"score":0.66754735},{"id":"https://openalex.org/C136197465","wikidata":"https://www.wikidata.org/wiki/Q1729295","display_name":"Variety (cybernetics)","level":2,"score":0.63876796},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6347914},{"id":"https://openalex.org/C2780801425","wikidata":"https://www.wikidata.org/wiki/Q5164392","display_name":"Construct (python library)","level":2,"score":0.5367547},{"id":"https://openalex.org/C2984927552","wikidata":"https://www.wikidata.org/wiki/Q845734","display_name":"Graphical display","level":2,"score":0.49052638},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.43162817},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3607958},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.34326175},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.32818073},{"id":"https://openalex.org/C121684516","wikidata":"https://www.wikidata.org/wiki/Q7600677","display_name":"Computer graphics (images)","level":1,"score":0.09562439},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.07855865}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1080/10618600.2021.2000873","pdf_url":"https://www.tandfonline.com/doi/pdf/10.1080/10618600.2021.2000873?needAccess=true","source":{"id":"https://openalex.org/S76159266","display_name":"Journal of Computational and Graphical Statistics","issn_l":"1061-8600","issn":["1061-8600","1537-2715"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://eprints.lancs.ac.uk/id/eprint/161559/1/2107.10572v1.pdf","pdf_url":"https://eprints.lancs.ac.uk/id/eprint/161559/1/2107.10572v1.pdf","source":{"id":"https://openalex.org/S4306401916","display_name":"Lancaster EPrints (Lancaster University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I67415387","host_organization_name":"Lancaster University","host_organization_lineage":["https://openalex.org/I67415387"],"host_organization_lineage_names":["Lancaster University"],"type":"repository"},"license":null,"license_id":null,"version":"acceptedVersion","is_accepted":true,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2107.10572","pdf_url":"https://arxiv.org/pdf/2107.10572","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1080/10618600.2021.2000873","pdf_url":"https://www.tandfonline.com/doi/pdf/10.1080/10618600.2021.2000873?needAccess=true","source":{"id":"https://openalex.org/S76159266","display_name":"Journal of Computational and Graphical Statistics","issn_l":"1061-8600","issn":["1061-8600","1537-2715"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320307756","funder_display_name":"Xerox","award_id":null},{"funder":"https://openalex.org/F4320309624","funder_display_name":"Cornell University","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W170433","https://openalex.org/W1793984240","https://openalex.org/W1967042859","https://openalex.org/W1975684011","https://openalex.org/W2012712694","https://openalex.org/W2048997388","https://openalex.org/W2051903196","https://openalex.org/W2051998218","https://openalex.org/W2116113455","https://openalex.org/W2118924197","https://openalex.org/W2119934409","https://openalex.org/W2125489113","https://openalex.org/W2137447383","https://openalex.org/W2158931229","https://openalex.org/W2488806491","https://openalex.org/W2525449401","https://openalex.org/W2582743722","https://openalex.org/W2656441826","https://openalex.org/W2737515944","https://openalex.org/W2795431618","https://openalex.org/W2922636440","https://openalex.org/W2948416201","https://openalex.org/W3034295318","https://openalex.org/W3098561233","https://openalex.org/W3100107183","https://openalex.org/W3101461704","https://openalex.org/W3105047319","https://openalex.org/W4206495155"],"related_works":["https://openalex.org/W4385957992","https://openalex.org/W4306674287","https://openalex.org/W4306321456","https://openalex.org/W4286629047","https://openalex.org/W4285260836","https://openalex.org/W4224009465","https://openalex.org/W4205958290","https://openalex.org/W3170094116","https://openalex.org/W3046775127","https://openalex.org/W2961085424"],"abstract_inverted_index":{"Changepoint":[0],"models":[1,30],"enjoy":[2],"a":[3,7,40,59],"wide":[4],"appeal":[5],"in":[6,45,102],"variety":[8],"of":[9,15,25,52,58,107],"disciplines":[10],"to":[11,21,70,81,92,104],"model":[12],"the":[13,23,50,108],"heterogeneity":[14],"ordered":[16],"data.":[17],"Graphical":[18],"influence":[19,24,51,96],"diagnostics":[20],"characterize":[22],"single":[26,53],"observations":[27,54,85],"on":[28,55],"changepoint":[29,46,60],"are,":[31],"however,":[32],"lacking.":[33],"We":[34,62,88],"address":[35],"this":[36,118],"gap":[37],"by":[38],"developing":[39],"framework":[41],"for":[42,117],"investigating":[43],"instabilities":[44,73],"segmentations":[47],"and":[48,76,80],"assessing":[49],"various":[56],"outputs":[57],"analysis.":[61],"construct":[63],"graphical":[64],"diagnostic":[65,97],"plots":[66,98],"that":[67,110],"allow":[68],"practitioners":[69],"assess":[71],"whether":[72],"occur;":[74,79],"how":[75,94],"where":[77],"they":[78],"detect":[82],"influential":[83],"individual":[84],"triggering":[86],"instability.":[87],"analyze":[89],"well-log":[90],"data":[91,109],"illustrate":[93],"such":[95],"can":[99],"be":[100],"used":[101],"practice":[103],"reveal":[105],"features":[106],"may":[111],"otherwise":[112],"remain":[113],"hidden.":[114],"Supplementary":[115],"materials":[116],"article":[119],"are":[120],"available":[121],"online.":[122]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3211341997","counts_by_year":[{"year":2021,"cited_by_count":1}],"updated_date":"2025-04-04T14:51:41.979684","created_date":"2021-11-22"}