{"id":"https://openalex.org/W4392374884","doi":"https://doi.org/10.1080/08839514.2024.2321550","title":"Application Of Density-Based Clustering Approaches For Stock Market Analysis","display_name":"Application Of Density-Based Clustering Approaches For Stock Market Analysis","publication_year":2024,"publication_date":"2024-03-04","ids":{"openalex":"https://openalex.org/W4392374884","doi":"https://doi.org/10.1080/08839514.2024.2321550"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1080/08839514.2024.2321550","pdf_url":"https://www.tandfonline.com/doi/pdf/10.1080/08839514.2024.2321550?needAccess=true","source":{"id":"https://openalex.org/S125501549","display_name":"Applied Artificial Intelligence","issn_l":"0883-9514","issn":["0883-9514","1087-6545"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.tandfonline.com/doi/pdf/10.1080/08839514.2024.2321550?needAccess=true","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5032752673","display_name":"Tanuja Das","orcid":"https://orcid.org/0000-0002-6766-064X"},"institutions":[{"id":"https://openalex.org/I138537684","display_name":"Gauhati University","ror":"https://ror.org/01ppj9r51","country_code":"IN","type":"funder","lineage":["https://openalex.org/I138537684"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Tanuja Das","raw_affiliation_strings":["Department of Information Technology, Gauhati University Institute of Science and Technology, Guwahati, Assam, India"],"affiliations":[{"raw_affiliation_string":"Department of Information Technology, Gauhati University Institute of Science and Technology, Guwahati, Assam, India","institution_ids":["https://openalex.org/I138537684"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029440675","display_name":"Anindya Halder","orcid":"https://orcid.org/0000-0001-6525-9804"},"institutions":[{"id":"https://openalex.org/I197465736","display_name":"North Eastern Hill University","ror":"https://ror.org/055m2tx54","country_code":"IN","type":"funder","lineage":["https://openalex.org/I197465736"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Anindya Halder","raw_affiliation_strings":["Department of Computer Application, School of Technology, North-Eastern Hill University, Tura, Meghalaya, India"],"affiliations":[{"raw_affiliation_string":"Department of Computer Application, School of Technology, North-Eastern Hill University, Tura, Meghalaya, India","institution_ids":["https://openalex.org/I197465736"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5041660325","display_name":"Goutam Saha","orcid":"https://orcid.org/0000-0003-0679-5855"},"institutions":[{"id":"https://openalex.org/I197465736","display_name":"North Eastern Hill University","ror":"https://ror.org/055m2tx54","country_code":"IN","type":"funder","lineage":["https://openalex.org/I197465736"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Goutam Saha","raw_affiliation_strings":["Department of Information Technology, School of Technology, North-Eastern Hill University, Shillong, Meghalaya, India"],"affiliations":[{"raw_affiliation_string":"Department of Information Technology, School of Technology, North-Eastern Hill University, Shillong, Meghalaya, India","institution_ids":["https://openalex.org/I197465736"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":2195,"currency":"USD","value_usd":2195},"apc_paid":{"value":2195,"currency":"USD","value_usd":2195},"fwci":1.269,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.835824,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":88},"biblio":{"volume":"38","issue":"1","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11270","display_name":"Complex Systems and Time Series Analysis","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11270","display_name":"Complex Systems and Time Series Analysis","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8606691},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.6608778},{"id":"https://openalex.org/C2780299701","wikidata":"https://www.wikidata.org/wiki/Q475000","display_name":"Stock market","level":3,"score":0.5178407},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.46313575},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.3200048},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2958983},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C2780762169","wikidata":"https://www.wikidata.org/wiki/Q5905368","display_name":"Horse","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1080/08839514.2024.2321550","pdf_url":"https://www.tandfonline.com/doi/pdf/10.1080/08839514.2024.2321550?needAccess=true","source":{"id":"https://openalex.org/S125501549","display_name":"Applied Artificial Intelligence","issn_l":"0883-9514","issn":["0883-9514","1087-6545"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1080/08839514.2024.2321550","pdf_url":"https://www.tandfonline.com/doi/pdf/10.1080/08839514.2024.2321550?needAccess=true","source":{"id":"https://openalex.org/S125501549","display_name":"Applied Artificial Intelligence","issn_l":"0883-9514","issn":["0883-9514","1087-6545"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":63,"referenced_works":["https://openalex.org/W1531328682","https://openalex.org/W1613448136","https://openalex.org/W1673310716","https://openalex.org/W1963505916","https://openalex.org/W1983056091","https://openalex.org/W1984961676","https://openalex.org/W1985930470","https://openalex.org/W1991902118","https://openalex.org/W2043832621","https://openalex.org/W2049633694","https://openalex.org/W2060154096","https://openalex.org/W2062696711","https://openalex.org/W2063306681","https://openalex.org/W2075111421","https://openalex.org/W2100826087","https://openalex.org/W2103559643","https://openalex.org/W2125310307","https://openalex.org/W2129066856","https://openalex.org/W2138980013","https://openalex.org/W2156483112","https://openalex.org/W2163398346","https://openalex.org/W2164500538","https://openalex.org/W2199535562","https://openalex.org/W2216641260","https://openalex.org/W2342029940","https://openalex.org/W2403108955","https://openalex.org/W2468992649","https://openalex.org/W2487200295","https://openalex.org/W2503179616","https://openalex.org/W2526420136","https://openalex.org/W2546689124","https://openalex.org/W2571012312","https://openalex.org/W2584791447","https://openalex.org/W2605238435","https://openalex.org/W2729898772","https://openalex.org/W2747812629","https://openalex.org/W2752054910","https://openalex.org/W2769177808","https://openalex.org/W2770412298","https://openalex.org/W2795577441","https://openalex.org/W2892861093","https://openalex.org/W2904897621","https://openalex.org/W2906758630","https://openalex.org/W2923002376","https://openalex.org/W2934672175","https://openalex.org/W2980356624","https://openalex.org/W2990714382","https://openalex.org/W3005264398","https://openalex.org/W3041020092","https://openalex.org/W3090540127","https://openalex.org/W3099347911","https://openalex.org/W3121261855","https://openalex.org/W3126021322","https://openalex.org/W3151941575","https://openalex.org/W3183082635","https://openalex.org/W3196029744","https://openalex.org/W3208261418","https://openalex.org/W387672264","https://openalex.org/W4233466431","https://openalex.org/W4240391235","https://openalex.org/W4285818420","https://openalex.org/W4302362891","https://openalex.org/W4372269069"],"related_works":["https://openalex.org/W4391913857","https://openalex.org/W2748952813","https://openalex.org/W2530322880","https://openalex.org/W2478288626","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2350741829","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Present":[0],"economy":[1],"is":[2,93],"largely":[3],"dependent":[4],"on":[5,55,142],"the":[6,10,14,19,25,30,38,56,69,83,105,143,152,168,174,190,194],"precise":[7],"forecasting":[8],"of":[9,27,32,40,44,85,101,104,111,150,158,167,193],"business":[11],"avenues":[12],"using":[13,61],"stock":[15,20,57,70,75,106,145],"market":[16,21,58,71,76,107,146],"data.":[17,108,147],"As":[18],"data":[22,59,72],"falls":[23],"under":[24],"category":[26],"big":[28],"data,":[29],"task":[31],"handling":[33],"becomes":[34],"complex":[35],"due":[36],"to":[37,184],"presence":[39],"a":[41],"large":[42],"number":[43],"investment":[45],"choices.":[46],"In":[47],"this":[48],"paper,":[49],"investigations":[50],"have":[51],"been":[52],"carried":[53],"out":[54],"analysis":[60],"various":[62],"density-based":[63,113,176],"clustering":[64,88,114,129,172,177],"approaches.":[65,178],"For":[66],"experimentation":[67],"purpose,":[68],"from":[73],"Quandl":[74],"was":[77,80,154,162],"used.":[78],"It":[79,161],"observed":[81],"that":[82,164],"effectiveness":[84],"Dynamic":[86,170],"Quantum":[87,171],"approach":[89],"were":[90,139,181],"better.":[91],"This":[92],"because":[94],"it":[95],"has":[96],"better":[97],"adopting":[98],"capability":[99],"according":[100],"changing":[102],"patterns":[103],"Similarly":[109],"performances":[110],"other":[112,175],"approaches":[115,153],"like":[116],"Weighted":[117],"Adaptive":[118],"Mean":[119],"Shift":[120],"Clustering,":[121],"DBSCAN":[122],"and":[123,126,135],"Expectation":[124],"Maximization":[125],"also":[127,140,182,188],"partitive":[128],"methods":[130],"such":[131],"as":[132],"k-means,":[133],"k-medoids":[134],"fuzzy":[136],"c":[137],"means":[138],"experimented":[141],"same":[144],"The":[148,179],"performance":[149],"all":[151],"tested":[155],"in":[156,165],"terms":[157],"standard":[159],"measures.":[160],"found":[163],"majority":[166],"cases,":[169],"outperforms":[173],"algorithms":[180],"subjected":[183],"paired":[185],"t-tests":[186],"which":[187],"confirmed":[189],"statistical":[191],"significance":[192],"results":[195],"obtained.":[196]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392374884","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-22T13:08:23.538964","created_date":"2024-03-05"}