{"id":"https://openalex.org/W2026315848","doi":"https://doi.org/10.1080/08839510290030264","title":"Discovering causality in large databases","display_name":"Discovering causality in large databases","publication_year":2002,"publication_date":"2002-05-01","ids":{"openalex":"https://openalex.org/W2026315848","doi":"https://doi.org/10.1080/08839510290030264","mag":"2026315848"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1080/08839510290030264","pdf_url":"https://www.tandfonline.com/doi/pdf/10.1080/08839510290030264?needAccess=true","source":{"id":"https://openalex.org/S125501549","display_name":"Applied Artificial Intelligence","issn_l":"0883-9514","issn":["0883-9514","1087-6545"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://www.tandfonline.com/doi/pdf/10.1080/08839510290030264?needAccess=true","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100764178","display_name":"Shichao Zhang","orcid":"https://orcid.org/0000-0001-9981-2970"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shichao Zhang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100438525","display_name":"Chengqi Zhang","orcid":"https://orcid.org/0000-0001-5715-7154"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chengqi Zhang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":2195,"currency":"USD","value_usd":2195},"apc_paid":null,"fwci":2.845,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":10,"citation_normalized_percentile":{"value":0.925004,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":79,"max":80},"biblio":{"volume":"16","issue":"5","first_page":"333","last_page":"358"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11063","display_name":"Rough Sets and Fuzzy Logic","score":0.996,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9911,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/causality","display_name":"Causality","score":0.8042073},{"id":"https://openalex.org/keywords/conditional-probability","display_name":"Conditional probability","score":0.5783782},{"id":"https://openalex.org/keywords/causal-model","display_name":"Causal model","score":0.47531396}],"concepts":[{"id":"https://openalex.org/C64357122","wikidata":"https://www.wikidata.org/wiki/Q1149766","display_name":"Causality (physics)","level":2,"score":0.8042073},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7409472},{"id":"https://openalex.org/C44492722","wikidata":"https://www.wikidata.org/wiki/Q327069","display_name":"Conditional probability","level":2,"score":0.5783782},{"id":"https://openalex.org/C2780586882","wikidata":"https://www.wikidata.org/wiki/Q7520643","display_name":"Simple (philosophy)","level":2,"score":0.54997605},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5387562},{"id":"https://openalex.org/C193524817","wikidata":"https://www.wikidata.org/wiki/Q386780","display_name":"Association rule learning","level":2,"score":0.5257942},{"id":"https://openalex.org/C11671645","wikidata":"https://www.wikidata.org/wiki/Q5054567","display_name":"Causal model","level":2,"score":0.47531396},{"id":"https://openalex.org/C2777735758","wikidata":"https://www.wikidata.org/wiki/Q817765","display_name":"Path (computing)","level":2,"score":0.4238695},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3616628},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20618013},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.16282365},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.071611345},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1080/08839510290030264","pdf_url":"https://www.tandfonline.com/doi/pdf/10.1080/08839510290030264?needAccess=true","source":{"id":"https://openalex.org/S125501549","display_name":"Applied Artificial Intelligence","issn_l":"0883-9514","issn":["0883-9514","1087-6545"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1080/08839510290030264","pdf_url":"https://www.tandfonline.com/doi/pdf/10.1080/08839510290030264?needAccess=true","source":{"id":"https://openalex.org/S125501549","display_name":"Applied Artificial Intelligence","issn_l":"0883-9514","issn":["0883-9514","1087-6545"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1484413656","https://openalex.org/W1520890006","https://openalex.org/W1596022446","https://openalex.org/W1961009203","https://openalex.org/W1965940778","https://openalex.org/W2000473687","https://openalex.org/W2037047753","https://openalex.org/W2040158750","https://openalex.org/W2100176599","https://openalex.org/W2129150932","https://openalex.org/W2137860515","https://openalex.org/W2139880890","https://openalex.org/W2144481322","https://openalex.org/W2153028052","https://openalex.org/W2159080219","https://openalex.org/W2166559705","https://openalex.org/W2170112109","https://openalex.org/W2210278139","https://openalex.org/W2997709717","https://openalex.org/W2998778915"],"related_works":["https://openalex.org/W4312269093","https://openalex.org/W4210420802","https://openalex.org/W3170261037","https://openalex.org/W3135588948","https://openalex.org/W2987568073","https://openalex.org/W2574301230","https://openalex.org/W2531326175","https://openalex.org/W2265587781","https://openalex.org/W2069623197","https://openalex.org/W2018580387"],"abstract_inverted_index":{"A":[0],"causal":[1,33,57,69,143,156],"rule":[2],"between":[3,82],"two":[4],"variables,":[5,61],"X":[6,16,84,92],"M":[7,93,99],"Y,":[8],"captures":[9],"the":[10,13,18,41,48,80,90,120,147],"relationship":[11],"that":[12,79,145],"presence":[14],"of":[15,20,23,43,154],"causes":[17],"appearance":[19],"Y.":[21],"Because":[22],"its":[24],"usefulness":[25],"(compared":[26],"to":[27,37,55,65,108,141],"association":[28],"rules),":[29],"techniques":[30],"for":[31],"mining":[32,56],"rules":[34,58,70,144],"are":[35,53,63],"beginning":[36],"be":[38,87],"developed.":[39],"However,":[40],"effectiveness":[42],"existing":[44],"methods":[45],"(such":[46],"as":[47],"LCD":[49],"and":[50,62,67,85,130],"CU-path":[51],"algorithms)":[52],"limited":[54],"among":[59,71],"simple":[60],"inadequate":[64],"discover":[66,109],"represent":[68],"multi-value":[72],"variables.":[73,134],"In":[74,135],"this":[75],"paper,":[76],"we":[77,137],"propose":[78,104],"causality":[81,110],"variables":[83,124,129],"Y":[86,94],"represented":[88],"in":[89,111,150],"form":[91],"with":[95],"conditional":[96,151],"probability":[97,152],"matrix":[98],"Y|X":[100],".":[101],"We":[102],"also":[103],"a":[105,139],"new":[106],"approach":[107,118],"large":[112],"databases":[113],"based":[114],"on":[115],"partitioning.":[116],"The":[117],"partitions":[119],"items":[121],"into":[122],"item":[123,128,133],"by":[125],"decomposing":[126],"\"bad\"":[127],"composing":[131],"\"not-good\"":[132],"particular,":[136],"establish":[138],"method":[140],"optimize":[142],"merges":[146],"\"useless\"":[148],"information":[149],"matrices":[153],"extracted":[155],"rules.":[157]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2026315848","counts_by_year":[{"year":2017,"cited_by_count":1},{"year":2012,"cited_by_count":1}],"updated_date":"2025-03-16T04:18:13.221992","created_date":"2016-06-24"}