{"id":"https://openalex.org/W3200003938","doi":"https://doi.org/10.1080/03610918.2021.1963454","title":"Linear Bayes estimator of the extreme value distribution based on type II censored samples","display_name":"Linear Bayes estimator of the extreme value distribution based on type II censored samples","publication_year":2021,"publication_date":"2021-09-09","ids":{"openalex":"https://openalex.org/W3200003938","doi":"https://doi.org/10.1080/03610918.2021.1963454","mag":"3200003938"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/03610918.2021.1963454","pdf_url":null,"source":{"id":"https://openalex.org/S153329750","display_name":"Communications in Statistics - Simulation and Computation","issn_l":"0361-0918","issn":["0361-0918","1532-4141"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100357750","display_name":"Tao Chen","orcid":"https://orcid.org/0000-0002-4980-6836"},"institutions":[{"id":"https://openalex.org/I21193070","display_name":"Beijing Jiaotong University","ror":"https://ror.org/01yj56c84","country_code":"CN","type":"education","lineage":["https://openalex.org/I21193070"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tao Chen","raw_affiliation_strings":["Department of Mathematics, Beijing Jiaotong University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics, Beijing Jiaotong University, Beijing, China","institution_ids":["https://openalex.org/I21193070"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100661626","display_name":"Li\u2010Chun Wang","orcid":"https://orcid.org/0000-0002-7883-6217"},"institutions":[{"id":"https://openalex.org/I21193070","display_name":"Beijing Jiaotong University","ror":"https://ror.org/01yj56c84","country_code":"CN","type":"education","lineage":["https://openalex.org/I21193070"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Lichun Wang","raw_affiliation_strings":["Department of Mathematics, Beijing Jiaotong University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics, Beijing Jiaotong University, Beijing, China","institution_ids":["https://openalex.org/I21193070"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5100661626"],"corresponding_institution_ids":["https://openalex.org/I21193070"],"apc_list":null,"apc_paid":null,"fwci":0.172,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.380304,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":58,"max":67},"biblio":{"volume":"52","issue":"9","first_page":"4532","last_page":"4544"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10968","display_name":"Skew Distributions and Applications in Statistics","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10968","display_name":"Skew Distributions and Applications in Statistics","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11186","display_name":"Global Drought Monitoring and Assessment","score":0.9849,"subfield":{"id":"https://openalex.org/subfields/2306","display_name":"Global and Planetary Change"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10928","display_name":"Uncertainty Quantification and Sensitivity Analysis","score":0.9828,"subfield":{"id":"https://openalex.org/subfields/1804","display_name":"Statistics, Probability and Uncertainty"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/trimmed-estimator","display_name":"Trimmed estimator","score":0.7179743},{"id":"https://openalex.org/keywords/maximum-likelihood-estimation","display_name":"Maximum Likelihood Estimation","score":0.507649},{"id":"https://openalex.org/keywords/bayes-estimator","display_name":"Bayes estimator","score":0.4382092}],"concepts":[{"id":"https://openalex.org/C41020250","wikidata":"https://www.wikidata.org/wiki/Q17144114","display_name":"Trimmed estimator","level":5,"score":0.7179743},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.66819257},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.6289773},{"id":"https://openalex.org/C191393472","wikidata":"https://www.wikidata.org/wiki/Q15222032","display_name":"Bias of an estimator","level":4,"score":0.56445956},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.55836487},{"id":"https://openalex.org/C207201462","wikidata":"https://www.wikidata.org/wiki/Q182505","display_name":"Bayes' theorem","level":3,"score":0.5449613},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.5251503},{"id":"https://openalex.org/C35594927","wikidata":"https://www.wikidata.org/wiki/Q2265984","display_name":"Efficient estimator","level":4,"score":0.5010798},{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.4974716},{"id":"https://openalex.org/C68022304","wikidata":"https://www.wikidata.org/wiki/Q842217","display_name":"Bayes estimator","level":3,"score":0.4382092},{"id":"https://openalex.org/C165646398","wikidata":"https://www.wikidata.org/wiki/Q3755281","display_name":"Minimum-variance unbiased estimator","level":3,"score":0.41547197},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.0954178}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/03610918.2021.1963454","pdf_url":null,"source":{"id":"https://openalex.org/S153329750","display_name":"Communications in Statistics - Simulation and Computation","issn_l":"0361-0918","issn":["0361-0918","1532-4141"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.42}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"11371051"}],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1970079104","https://openalex.org/W1983173095","https://openalex.org/W2000991338","https://openalex.org/W2015607289","https://openalex.org/W2017696952","https://openalex.org/W2019747837","https://openalex.org/W2021054806","https://openalex.org/W2031138174","https://openalex.org/W2041151195","https://openalex.org/W2049963155","https://openalex.org/W2055773936","https://openalex.org/W2056760934","https://openalex.org/W2062618520","https://openalex.org/W2067002231","https://openalex.org/W2072173190","https://openalex.org/W2126891037","https://openalex.org/W2138309709","https://openalex.org/W2314657904","https://openalex.org/W2403035479","https://openalex.org/W2486038092","https://openalex.org/W4233769071"],"related_works":["https://openalex.org/W4320482479","https://openalex.org/W4283751653","https://openalex.org/W4239491110","https://openalex.org/W3092888124","https://openalex.org/W2915452620","https://openalex.org/W2910434125","https://openalex.org/W2508380856","https://openalex.org/W2356451205","https://openalex.org/W2349547417","https://openalex.org/W1984619412"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"a":[3,84],"linear":[4,33],"Bayes":[5,34],"method":[6],"is":[7,62,80],"employed":[8],"to":[9,64,71,83,88],"simultaneously":[10],"estimate":[11],"the":[12,16,20,32,38,46,53,74],"location":[13],"parameter":[14,18,39],"and":[15,41,66],"scale":[17],"of":[19,37,52],"extreme":[21],"value":[22],"distribution.":[23],"Based":[24],"on":[25],"type":[26],"II":[27],"censored":[28],"samples,":[29],"we":[30],"construct":[31],"estimator":[35,49,79],"(LBE)":[36],"vector":[40],"establish":[42],"its":[43,90],"superiority":[44],"over":[45],"classical":[47],"unbiased":[48],"in":[50],"terms":[51],"mean":[54],"square":[55],"error":[56],"matrix":[57],"criterion.":[58],"The":[59,78],"proposed":[60],"LBE":[61,75],"easy":[63],"calculate,":[65],"numerical":[67],"results":[68],"are":[69],"presented":[70],"verify":[72],"that":[73],"works":[76],"well.":[77],"further":[81],"applied":[82],"real":[85],"data":[86],"case":[87],"demonstrate":[89],"feasibility.":[91]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3200003938","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-11-25T00:36:03.421605","created_date":"2021-09-27"}