{"id":"https://openalex.org/W4311129550","doi":"https://doi.org/10.1080/01969722.2022.2148510","title":"Deepsentimodels: A Novel Hybrid Deep Learning Model for an Effective Analysis of Ensembled Sentiments in E-Commerce and S-Commerce Platforms","display_name":"Deepsentimodels: A Novel Hybrid Deep Learning Model for an Effective Analysis of Ensembled Sentiments in E-Commerce and S-Commerce Platforms","publication_year":2022,"publication_date":"2022-12-02","ids":{"openalex":"https://openalex.org/W4311129550","doi":"https://doi.org/10.1080/01969722.2022.2148510"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/01969722.2022.2148510","pdf_url":null,"source":{"id":"https://openalex.org/S117436046","display_name":"Cybernetics & Systems","issn_l":"0196-9722","issn":["0196-9722","1087-6553"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5020078305","display_name":"R. Venkatesan","orcid":null},"institutions":[],"countries":["IN"],"is_corresponding":true,"raw_author_name":"R. Venkatesan","raw_affiliation_strings":["Department of Information Technology, Bannari Amman Institute of Technology, Sathyamangalam, India"],"affiliations":[{"raw_affiliation_string":"Department of Information Technology, Bannari Amman Institute of Technology, Sathyamangalam, India","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5083263876","display_name":"Alauddin Sabari","orcid":null},"institutions":[],"countries":["IN"],"is_corresponding":false,"raw_author_name":"A. Sabari","raw_affiliation_strings":["Department of Information Technology, K.S. Rangasamy College of Technology, Tiruchengode, India"],"affiliations":[{"raw_affiliation_string":"Department of Information Technology, K.S. Rangasamy College of Technology, Tiruchengode, India","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":["https://openalex.org/A5020078305"],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.783,"has_fulltext":false,"cited_by_count":11,"citation_normalized_percentile":{"value":0.685436,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":"54","issue":"4","first_page":"526","last_page":"549"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11644","display_name":"Spam and Phishing Detection","score":0.9902,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9826,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.74559325},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6815506},{"id":"https://openalex.org/C100660578","wikidata":"https://www.wikidata.org/wiki/Q18733","display_name":"Recall","level":2,"score":0.67705524},{"id":"https://openalex.org/C122980154","wikidata":"https://www.wikidata.org/wiki/Q205555","display_name":"Feeling","level":2,"score":0.66857684},{"id":"https://openalex.org/C90673727","wikidata":"https://www.wikidata.org/wiki/Q901718","display_name":"Product (mathematics)","level":2,"score":0.58585453},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.57984746},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5435642},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5331843},{"id":"https://openalex.org/C61797465","wikidata":"https://www.wikidata.org/wiki/Q1188986","display_name":"Term (time)","level":2,"score":0.47606415},{"id":"https://openalex.org/C518677369","wikidata":"https://www.wikidata.org/wiki/Q202833","display_name":"Social media","level":2,"score":0.44401968},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3304056},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.24497104},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.2233367},{"id":"https://openalex.org/C180747234","wikidata":"https://www.wikidata.org/wiki/Q23373","display_name":"Cognitive psychology","level":1,"score":0.21817133},{"id":"https://openalex.org/C77805123","wikidata":"https://www.wikidata.org/wiki/Q161272","display_name":"Social psychology","level":1,"score":0.16833627},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.1244351},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/01969722.2022.2148510","pdf_url":null,"source":{"id":"https://openalex.org/S117436046","display_name":"Cybernetics & Systems","issn_l":"0196-9722","issn":["0196-9722","1087-6553"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W1975241571","https://openalex.org/W2115023510","https://openalex.org/W2119867600","https://openalex.org/W2187897452","https://openalex.org/W2556605533","https://openalex.org/W2584429674","https://openalex.org/W2781487490","https://openalex.org/W2788302117","https://openalex.org/W28154616","https://openalex.org/W2889326873","https://openalex.org/W2892246685","https://openalex.org/W2911369068","https://openalex.org/W2946063542","https://openalex.org/W2950318504","https://openalex.org/W2952006848","https://openalex.org/W2954371498","https://openalex.org/W2962824509","https://openalex.org/W2970203214","https://openalex.org/W2991441121","https://openalex.org/W2995572800","https://openalex.org/W2997226898","https://openalex.org/W3000576283","https://openalex.org/W3003618396","https://openalex.org/W3010680855","https://openalex.org/W3013019789","https://openalex.org/W3044780320","https://openalex.org/W3087215080","https://openalex.org/W3138889816","https://openalex.org/W4211186029","https://openalex.org/W4285778109"],"related_works":["https://openalex.org/W4312417841","https://openalex.org/W4229598134","https://openalex.org/W4226493464","https://openalex.org/W3193565141","https://openalex.org/W3167935049","https://openalex.org/W3133861977","https://openalex.org/W3029198973","https://openalex.org/W2291261743","https://openalex.org/W2071657884","https://openalex.org/W1540119434"],"abstract_inverted_index":{"Social":[0],"networks":[1,140,189],"and":[2,14,31,37,48,122,142,157,192],"media":[3],"have":[4,168],"gradually":[5],"grabbed":[6],"significant":[7],"time":[8],"from":[9],"people\u2019s":[10,46,93,120,155],"lives":[11],"to":[12,44,72,91,103,113,175],"share":[13],"communicate":[15],"information.":[16],"Moreover,":[17],"these":[18,210],"social":[19,53],"platforms":[20],"also":[21],"act":[22],"as":[23,198],"an":[24,86],"emotional":[25],"catalyst":[26],"for":[27,151,164,213],"expressing":[28],"their":[29,50,61,78,96,105],"feeling":[30],"views":[32,94],"on":[33,77,95,220],"different":[34,222],"products,":[35],"movies,":[36],"even":[38],"national":[39],"policies.":[40],"Thus,":[41],"it":[42,56,107],"helps":[43,57],"understand":[45,73,92],"opinions":[47],"predict":[49],"behaviors":[51],"in":[52],"networks,":[54],"where":[55],"the":[58,68,74,115,119,125,158,215,221],"entrepreneur":[59],"improve":[60],"products":[62],"or":[63],"services.":[64],"It":[65],"is":[66,89,196,206],"considered":[67],"most":[69],"efficient":[70],"method":[71],"customer\u2019s":[75],"view":[76],"product":[79],"better.":[80],"Since":[81],"entrepreneurs":[82],"are":[83],"increasing":[84],"exponentially,":[85],"intelligent":[87,161,216],"system":[88],"required":[90],"products.":[97],"Also,":[98],"people":[99],"use":[100],"informal":[101],"language":[102],"express":[104],"sentiments;":[106],"has":[108],"become":[109],"a":[110,131],"daunting":[111],"task":[112],"extract":[114],"sentiments":[116],"that":[117],"reflect":[118],"attitude":[121],"feedback":[123],"about":[124],"product.":[126],"Therefore,":[127],"this":[128],"article":[129],"suggests":[130],"novel":[132],"hybrid":[133,178],"deep":[134,179],"learning":[135,180],"system,":[136],"consisting":[137],"of":[138,154,160],"bi-convolutional":[139],"(B-CNN)":[141],"spotted":[143],"hyena":[144],"optimized":[145],"long":[146,183],"short":[147],"term":[148],"memory":[149,185],"(SHOLSTM),":[150],"improved":[152],"understanding":[153],"feelings":[156],"construction":[159],"recommendation":[162,217],"systems":[163,218],"entrepreneurs.":[165],"Many":[166],"experiments":[167],"been":[169],"conducted":[170],"utilizing":[171],"various":[172],"datasets":[173],"compared":[174],"other":[176],"current":[177],"methods,":[181],"including":[182],"short-term":[184],"(LSTM),":[186],"convolutional":[187],"neural":[188],"(CNN),":[190],"BIGRU,":[191],"attention":[193],"classifiers.":[194],"Accuracy":[195],"achieved":[197],"99.4%,":[199],"99%":[200],"precision,":[201],"99.2%":[202,204],"recall,":[203],"F1-score":[205],"achieved,":[207],"which":[208],"suits":[209],"algorithms":[211],"best":[212],"implementing":[214],"based":[219],"ensembled":[223],"sentiments.":[224]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4311129550","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":6}],"updated_date":"2024-12-24T04:08:29.643890","created_date":"2022-12-23"}