{"id":"https://openalex.org/W4308356236","doi":"https://doi.org/10.1080/01969722.2022.2137643","title":"Optimized Deep Neural Model-Based Intrusion Detection and Mitigation System for Vehicular Ad-Hoc Network","display_name":"Optimized Deep Neural Model-Based Intrusion Detection and Mitigation System for Vehicular Ad-Hoc Network","publication_year":2022,"publication_date":"2022-11-04","ids":{"openalex":"https://openalex.org/W4308356236","doi":"https://doi.org/10.1080/01969722.2022.2137643"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/01969722.2022.2137643","pdf_url":null,"source":{"id":"https://openalex.org/S117436046","display_name":"Cybernetics & Systems","issn_l":"0196-9722","issn":["0196-9722","1087-6553"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5091589249","display_name":"Prakash Sontakke","orcid":"https://orcid.org/0000-0002-7129-7513"},"institutions":[{"id":"https://openalex.org/I878213199","display_name":"Savitribai Phule Pune University","ror":"https://ror.org/044g6d731","country_code":"IN","type":"funder","lineage":["https://openalex.org/I878213199"]}],"countries":["IN"],"is_corresponding":true,"raw_author_name":"Prakash Vijay Sontakke","raw_affiliation_strings":["Department of Electronics and Telecommunication, Pimpri Chinchwad College of Engineering, Savitribai Phule Pune University, Pune, India"],"affiliations":[{"raw_affiliation_string":"Department of Electronics and Telecommunication, Pimpri Chinchwad College of Engineering, Savitribai Phule Pune University, Pune, India","institution_ids":["https://openalex.org/I878213199"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5081780094","display_name":"Nilkanth B. Chopade","orcid":"https://orcid.org/0000-0001-5736-2713"},"institutions":[{"id":"https://openalex.org/I878213199","display_name":"Savitribai Phule Pune University","ror":"https://ror.org/044g6d731","country_code":"IN","type":"funder","lineage":["https://openalex.org/I878213199"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Nilkanth B. Chopade","raw_affiliation_strings":["Department of Electronics and Telecommunication, Pimpri Chinchwad College of Engineering, Savitribai Phule Pune University, Pune, India"],"affiliations":[{"raw_affiliation_string":"Department of Electronics and Telecommunication, Pimpri Chinchwad College of Engineering, Savitribai Phule Pune University, Pune, India","institution_ids":["https://openalex.org/I878213199"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5091589249"],"corresponding_institution_ids":["https://openalex.org/I878213199"],"apc_list":null,"apc_paid":null,"fwci":0.544,"has_fulltext":false,"cited_by_count":6,"citation_normalized_percentile":{"value":0.734829,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":86},"biblio":{"volume":"54","issue":"7","first_page":"985","last_page":"1013"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10761","display_name":"Vehicular Ad Hoc Networks (VANETs)","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10761","display_name":"Vehicular Ad Hoc Networks (VANETs)","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9917,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/local-optimum","display_name":"Local optimum","score":0.4548964},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.43749118}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.83293045},{"id":"https://openalex.org/C35525427","wikidata":"https://www.wikidata.org/wiki/Q745881","display_name":"Intrusion detection system","level":2,"score":0.7431001},{"id":"https://openalex.org/C85617194","wikidata":"https://www.wikidata.org/wiki/Q2072794","display_name":"Particle swarm optimization","level":2,"score":0.7347538},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5972464},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5457515},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.52220196},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.45937952},{"id":"https://openalex.org/C141934464","wikidata":"https://www.wikidata.org/wiki/Q3305386","display_name":"Local optimum","level":2,"score":0.4548964},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.43749118},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.4293504},{"id":"https://openalex.org/C178300618","wikidata":"https://www.wikidata.org/wiki/Q1898509","display_name":"Extant taxon","level":2,"score":0.4256936},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.42176092},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.38480628},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.37525183},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/01969722.2022.2137643","pdf_url":null,"source":{"id":"https://openalex.org/S117436046","display_name":"Cybernetics & Systems","issn_l":"0196-9722","issn":["0196-9722","1087-6553"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W1046299573","https://openalex.org/W1981981851","https://openalex.org/W2028397517","https://openalex.org/W2094689349","https://openalex.org/W2095003442","https://openalex.org/W2121571815","https://openalex.org/W2320893193","https://openalex.org/W2498575077","https://openalex.org/W2518963025","https://openalex.org/W2561408321","https://openalex.org/W2581560412","https://openalex.org/W2595545394","https://openalex.org/W2775819997","https://openalex.org/W2789384445","https://openalex.org/W2790544619","https://openalex.org/W2791019495","https://openalex.org/W2801555828","https://openalex.org/W2803807991","https://openalex.org/W2886863761","https://openalex.org/W2893365861","https://openalex.org/W2903668936","https://openalex.org/W2907968269","https://openalex.org/W2946728073","https://openalex.org/W2951278513","https://openalex.org/W2979696578","https://openalex.org/W2980932806","https://openalex.org/W2996463159","https://openalex.org/W3006764107","https://openalex.org/W3021340023","https://openalex.org/W3044350655","https://openalex.org/W3046463051","https://openalex.org/W3046949133","https://openalex.org/W3066684277","https://openalex.org/W3085385370","https://openalex.org/W3108001324","https://openalex.org/W3206599325","https://openalex.org/W4362597614"],"related_works":["https://openalex.org/W4225360039","https://openalex.org/W2546942002","https://openalex.org/W2433029016","https://openalex.org/W2381773606","https://openalex.org/W2379733662","https://openalex.org/W2345184372","https://openalex.org/W2336974148","https://openalex.org/W2187500075","https://openalex.org/W2126100045","https://openalex.org/W2016461833"],"abstract_inverted_index":{"In":[0,33],"this":[1,91,138],"research":[2],"work,":[3],"a":[4,80],"novel":[5],"Intrusion":[6],"Detection":[7],"and":[8,31,45,108,184],"Mitigation":[9],"System":[10],"(IDMS)":[11],"is":[12,88,116,119,135,147,163],"modeled":[13],"based":[14,132],"on":[15],"the":[16,34,38,42,46,62,69,74,77,97,113,124,127,141,144,150,167],"optimization":[17],"assisted":[18],"deep":[19],"learning":[20],"technique.":[21],"The":[22,93,159],"two":[23],"major":[24],"phases":[25],"are:":[26],"feature":[27,35],"extraction,":[28],"attack":[29,58,72,114],"detection":[30,59],"mitigation.":[32],"extraction":[36],"phases,":[37],"features":[39,54],"related":[40],"to":[41,57,122],"traffic":[43],"flow":[44],"vehicle":[47],"position":[48],"gets":[49],"extracted.":[50],"Then,":[51],"these":[52],"extracted":[53],"are":[55],"subjected":[56],"phase,":[60],"where":[61],"weight":[63],"optimized":[64],"Deep":[65],"Neural":[66],"Network":[67],"detects":[68],"presence/absence":[70],"of":[71,143,155],"in":[73,90,137,153],"network.":[75,128],"For":[76,129],"tuning":[78],"purpose,":[79],"new":[81],"Improved":[82],"Particle":[83],"Swarm":[84],"Optimization":[85],"(IPSO)":[86],"algorithm":[87],"introduced":[89],"work.":[92,139],"presented":[94],"method":[95],"overcomes":[96],"traditional":[98],"PSO's":[99],"drawbacks,":[100],"such":[101],"as":[102],"easily":[103],"falling":[104],"into":[105],"local":[106],"optima,":[107],"improves":[109],"its":[110],"performance.":[111],"Once":[112],"behavior":[115],"identified,":[117],"it":[118],"very":[120],"important":[121],"mitigate":[123],"attacker":[125],"from":[126],"this,":[130],"BAIT":[131],"mitigation":[133],"process":[134],"used":[136],"Finally,":[140],"performance":[142,157],"proposed":[145,160],"IDMS":[146],"evaluated":[148],"over":[149],"extant":[151],"techniques":[152],"terms":[154],"certain":[156],"measures.":[158],"work\u2019s":[161],"UR":[162],"13%":[164],"better":[165,171,177,181,186],"than":[166,172,178,182,187],"current":[168],"SVM,":[169],"9%":[170],"PSO":[173],"+":[174,189],"DNN,":[175],"6.6%":[176],"NB,":[179],"8.6%":[180],"I-GHSOM,":[183],"16.6%":[185],"SLnO":[188],"DNN.":[190]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4308356236","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2}],"updated_date":"2025-04-04T03:53:24.383612","created_date":"2022-11-11"}