{"id":"https://openalex.org/W4306392821","doi":"https://doi.org/10.1080/01969722.2022.2129376","title":"Metaheuristic Assisted Hybrid Classifier for Bitcoin Price Prediction","display_name":"Metaheuristic Assisted Hybrid Classifier for Bitcoin Price Prediction","publication_year":2022,"publication_date":"2022-10-17","ids":{"openalex":"https://openalex.org/W4306392821","doi":"https://doi.org/10.1080/01969722.2022.2129376"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/01969722.2022.2129376","pdf_url":null,"source":{"id":"https://openalex.org/S117436046","display_name":"Cybernetics & Systems","issn_l":"0196-9722","issn":["0196-9722","1087-6553"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5048321639","display_name":"Ruchi Gupta","orcid":"https://orcid.org/0000-0002-3253-6438"},"institutions":[{"id":"https://openalex.org/I166533956","display_name":"Institute of Management Technology","ror":"https://ror.org/05k0kb696","country_code":"IN","type":"education","lineage":["https://openalex.org/I166533956"]}],"countries":["IN"],"is_corresponding":true,"raw_author_name":"Ruchi Gupta","raw_affiliation_strings":["Department of Information Technology, Ajay Kumar Garg Engineering College, Ghaziabad, India"],"affiliations":[{"raw_affiliation_string":"Department of Information Technology, Ajay Kumar Garg Engineering College, Ghaziabad, India","institution_ids":["https://openalex.org/I166533956"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5012409189","display_name":"Jagannath E. Nalavade","orcid":"https://orcid.org/0000-0002-1645-0095"},"institutions":[{"id":"https://openalex.org/I4210162439","display_name":"MIT Art, Design and Technology University","ror":"https://ror.org/05b69xa56","country_code":"IN","type":"education","lineage":["https://openalex.org/I4210162439"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Jagannath E. Nalavade","raw_affiliation_strings":["Department of CSE, MITADT School of Engineering, Pune, India"],"affiliations":[{"raw_affiliation_string":"Department of CSE, MITADT School of Engineering, Pune, India","institution_ids":["https://openalex.org/I4210162439"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5048321639"],"corresponding_institution_ids":["https://openalex.org/I166533956"],"apc_list":null,"apc_paid":null,"fwci":3.675,"has_fulltext":false,"cited_by_count":9,"citation_normalized_percentile":{"value":0.830548,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":"54","issue":"7","first_page":"1037","last_page":"1061"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10270","display_name":"Blockchain Technology Applications and Security","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10270","display_name":"Blockchain Technology Applications and Security","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.997,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11059","display_name":"Market Dynamics and Volatility","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature-engineering","display_name":"Feature Engineering","score":0.5154577},{"id":"https://openalex.org/keywords/ensemble-forecasting","display_name":"Ensemble forecasting","score":0.43304536}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.77326787},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.63649607},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6070955},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.557683},{"id":"https://openalex.org/C2778827112","wikidata":"https://www.wikidata.org/wiki/Q22245680","display_name":"Feature engineering","level":3,"score":0.5154577},{"id":"https://openalex.org/C180706569","wikidata":"https://www.wikidata.org/wiki/Q13479982","display_name":"Cryptocurrency","level":2,"score":0.5116556},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.4812617},{"id":"https://openalex.org/C119898033","wikidata":"https://www.wikidata.org/wiki/Q3433888","display_name":"Ensemble forecasting","level":2,"score":0.43304536},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.41713908},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3699097},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.17743406},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/01969722.2022.2129376","pdf_url":null,"source":{"id":"https://openalex.org/S117436046","display_name":"Cybernetics & Systems","issn_l":"0196-9722","issn":["0196-9722","1087-6553"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","score":0.51,"id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W2121571815","https://openalex.org/W2327031957","https://openalex.org/W2546350184","https://openalex.org/W2775379762","https://openalex.org/W2801442769","https://openalex.org/W2809250076","https://openalex.org/W2837446836","https://openalex.org/W2892040847","https://openalex.org/W2900785697","https://openalex.org/W2902408730","https://openalex.org/W2910062285","https://openalex.org/W2912168909","https://openalex.org/W2931737358","https://openalex.org/W2948108400","https://openalex.org/W2951494616","https://openalex.org/W2967732991","https://openalex.org/W2970679147","https://openalex.org/W2974558844","https://openalex.org/W2999859778","https://openalex.org/W3003538339","https://openalex.org/W3003844137","https://openalex.org/W3004396576","https://openalex.org/W3014727196","https://openalex.org/W3021511960","https://openalex.org/W3022076500","https://openalex.org/W3035343269","https://openalex.org/W3036383736","https://openalex.org/W3040784485","https://openalex.org/W3047756980","https://openalex.org/W3093870340","https://openalex.org/W3132574015","https://openalex.org/W4233834090","https://openalex.org/W4282935339"],"related_works":["https://openalex.org/W4366411693","https://openalex.org/W4321377877","https://openalex.org/W4291291739","https://openalex.org/W4283364608","https://openalex.org/W3211641817","https://openalex.org/W3164717803","https://openalex.org/W3123387860","https://openalex.org/W2948261066","https://openalex.org/W2915579847","https://openalex.org/W2907143025"],"abstract_inverted_index":{"Bitcoin":[0,44,66,115,157],"has":[1],"recently":[2],"been":[3],"greatly":[4],"regarded":[5],"as":[6,168],"an":[7],"investment":[8,27],"asset.":[9],"It":[10,138],"is":[11,23,30,71,109,139,184],"incredibly":[12],"unpredictable":[13],"despite":[14],"being":[15],"the":[16,34,64,90,98,104,114,128,143,148,153,163,177,180,189],"biggest":[17],"digital":[18],"currency.":[19],"Therefore,":[20],"accurate":[21,74],"forecasting":[22],"essential":[24],"for":[25],"making":[26],"strategies.":[28],"This":[29,69],"a":[31,42,77,169],"difficulty":[32],"that":[33,187],"latest":[35],"research":[36],"effort":[37],"takes":[38],"on":[39],"to":[40,111,141,151,173],"construct":[41],"revolutionary":[43],"price":[45,54,116],"prediction":[46,55],"model":[47],"by":[48,75],"incorporating":[49],"new":[50],"feature":[51,79,99],"engineering":[52],"and":[53,73,89,120,134],"methods.":[56],"The":[57,82,123,160],"original":[58,121],"features":[59,88,155],"are":[60,95],"first":[61],"retrieved":[62],"from":[63],"actual":[65],"data":[67],"obtained.":[68],"work":[70],"well-fit":[72],"developing":[76],"novel":[78,164],"computing":[80],"framework.":[81],"proposed":[83],"decomposed":[84],"inter-day":[85],"difference":[86],"based":[87],"second":[91],"order":[92],"technical":[93],"indicator":[94],"generated":[96],"within":[97],"extraction":[100],"stage.":[101],"Following":[102],"that,":[103],"developed":[105],"two-level":[106,124,181],"ensemble":[107,125,149,182],"classifier":[108,126,183],"used":[110],"accurately":[112],"forecast":[113],"value":[117],"using":[118],"extracted":[119],"features.":[122],"blends":[127],"outstanding":[129],"classifiers":[130],"support":[131],"vector":[132],"machine":[133],"artificial":[135],"neural":[136],"networks.":[137],"intended":[140],"adjust":[142],"weight":[144],"parameter":[145],"throughout":[146],"training":[147],"method":[150],"accommodate":[152],"unpredictability":[154],"of":[156,179,188],"prices":[158],"better.":[159],"article":[161],"presented":[162],"self-adaptive":[165],"bat":[166],"algorithm":[167],"solution.":[170],"With":[171],"regard":[172],"specific":[174],"performance":[175],"metrics,":[176],"output":[178],"contrasted":[185],"with":[186],"current":[190],"models.":[191]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4306392821","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":2}],"updated_date":"2025-01-05T12:49:23.655681","created_date":"2022-10-17"}