{"id":"https://openalex.org/W4311243618","doi":"https://doi.org/10.1080/00401706.2022.2156615","title":"A Tweedie Compound Poisson Model in Reproducing Kernel Hilbert Space","display_name":"A Tweedie Compound Poisson Model in Reproducing Kernel Hilbert Space","publication_year":2022,"publication_date":"2022-12-13","ids":{"openalex":"https://openalex.org/W4311243618","doi":"https://doi.org/10.1080/00401706.2022.2156615"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/00401706.2022.2156615","pdf_url":null,"source":{"id":"https://openalex.org/S985303","display_name":"Technometrics","issn_l":"0040-1706","issn":["0040-1706","1537-2723"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5001445345","display_name":"Lian Yi","orcid":"https://orcid.org/0000-0001-7832-5217"},"institutions":[{"id":"https://openalex.org/I5023651","display_name":"McGill University","ror":"https://ror.org/01pxwe438","country_code":"CA","type":"funder","lineage":["https://openalex.org/I5023651"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Yi Lian","raw_affiliation_strings":["Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada"],"affiliations":[{"raw_affiliation_string":"Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada","institution_ids":["https://openalex.org/I5023651"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012091034","display_name":"Archer Y. Yang","orcid":null},"institutions":[{"id":"https://openalex.org/I5023651","display_name":"McGill University","ror":"https://ror.org/01pxwe438","country_code":"CA","type":"funder","lineage":["https://openalex.org/I5023651"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Archer Yi Yang","raw_affiliation_strings":["Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada","institution_ids":["https://openalex.org/I5023651"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101725165","display_name":"Boxiang Wang","orcid":"https://orcid.org/0000-0002-4187-552X"},"institutions":[{"id":"https://openalex.org/I126307644","display_name":"University of Iowa","ror":"https://ror.org/036jqmy94","country_code":"US","type":"funder","lineage":["https://openalex.org/I126307644"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Boxiang Wang","raw_affiliation_strings":["Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA"],"affiliations":[{"raw_affiliation_string":"Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA","institution_ids":["https://openalex.org/I126307644"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086867154","display_name":"Peng Shi","orcid":"https://orcid.org/0000-0003-2789-3235"},"institutions":[{"id":"https://openalex.org/I135310074","display_name":"University of Wisconsin\u2013Madison","ror":"https://ror.org/01y2jtd41","country_code":"US","type":"funder","lineage":["https://openalex.org/I135310074"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Peng Shi","raw_affiliation_strings":["Risk and Insurance Department, Wisconsin School of Business, University of Wisconsin-Madison, Madison, WI"],"affiliations":[{"raw_affiliation_string":"Risk and Insurance Department, Wisconsin School of Business, University of Wisconsin-Madison, Madison, WI","institution_ids":["https://openalex.org/I135310074"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5072578581","display_name":"Robert W. Platt","orcid":"https://orcid.org/0000-0002-5981-8443"},"institutions":[{"id":"https://openalex.org/I5023651","display_name":"McGill University","ror":"https://ror.org/01pxwe438","country_code":"CA","type":"funder","lineage":["https://openalex.org/I5023651"]}],"countries":["CA"],"is_corresponding":true,"raw_author_name":"Robert William Platt","raw_affiliation_strings":["Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada"],"affiliations":[{"raw_affiliation_string":"Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada","institution_ids":["https://openalex.org/I5023651"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5072578581"],"corresponding_institution_ids":["https://openalex.org/I5023651"],"apc_list":null,"apc_paid":null,"fwci":0.667,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.591142,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":75,"max":79},"biblio":{"volume":"65","issue":"2","first_page":"281","last_page":"295"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/interpretability","display_name":"Interpretability","score":0.78211915},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.64810604}],"concepts":[{"id":"https://openalex.org/C2781067378","wikidata":"https://www.wikidata.org/wiki/Q17027399","display_name":"Interpretability","level":2,"score":0.78211915},{"id":"https://openalex.org/C80884492","wikidata":"https://www.wikidata.org/wiki/Q3345678","display_name":"Reproducing kernel Hilbert space","level":3,"score":0.6529391},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.6506914},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.64810604},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.59401524},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.58641064},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.4742281},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.43479618},{"id":"https://openalex.org/C122280245","wikidata":"https://www.wikidata.org/wiki/Q620622","display_name":"Kernel method","level":3,"score":0.43184483},{"id":"https://openalex.org/C129848803","wikidata":"https://www.wikidata.org/wiki/Q2564360","display_name":"Sample size determination","level":2,"score":0.42003262},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.3823626},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3599363},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.34568208},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33027416},{"id":"https://openalex.org/C62799726","wikidata":"https://www.wikidata.org/wiki/Q190056","display_name":"Hilbert space","level":2,"score":0.26875752},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.20585302},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.18149528},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/00401706.2022.2156615","pdf_url":null,"source":{"id":"https://openalex.org/S985303","display_name":"Technometrics","issn_l":"0040-1706","issn":["0040-1706","1537-2723"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320334593","funder_display_name":"Natural Sciences and Engineering Research Council of Canada","award_id":"RGPIN-2016-05174"}],"datasets":["https://openalex.org/W4394318469"],"versions":[],"referenced_works_count":61,"referenced_works":["https://openalex.org/W1678356000","https://openalex.org/W1966592054","https://openalex.org/W1969811075","https://openalex.org/W1973415729","https://openalex.org/W1975418807","https://openalex.org/W1987084611","https://openalex.org/W1992601594","https://openalex.org/W2005136695","https://openalex.org/W2006044087","https://openalex.org/W2012960907","https://openalex.org/W2015932775","https://openalex.org/W2038210983","https://openalex.org/W2039666939","https://openalex.org/W2049701820","https://openalex.org/W2050878697","https://openalex.org/W2051249278","https://openalex.org/W2056575597","https://openalex.org/W2057939108","https://openalex.org/W2059586969","https://openalex.org/W2078409719","https://openalex.org/W2078950386","https://openalex.org/W2080726496","https://openalex.org/W2081100032","https://openalex.org/W2095981367","https://openalex.org/W2103111465","https://openalex.org/W2119160928","https://openalex.org/W2122216763","https://openalex.org/W2126429052","https://openalex.org/W2133956794","https://openalex.org/W2134548066","https://openalex.org/W2139916690","https://openalex.org/W2147574125","https://openalex.org/W2168703246","https://openalex.org/W2336133126","https://openalex.org/W2338509365","https://openalex.org/W2465940576","https://openalex.org/W2472504711","https://openalex.org/W2492794003","https://openalex.org/W2498163950","https://openalex.org/W2559655401","https://openalex.org/W2595697910","https://openalex.org/W2787894218","https://openalex.org/W2795894941","https://openalex.org/W2801234410","https://openalex.org/W2913653025","https://openalex.org/W2962738377","https://openalex.org/W2963338207","https://openalex.org/W2963742757","https://openalex.org/W2964496970","https://openalex.org/W2990138404","https://openalex.org/W2999905431","https://openalex.org/W3095373478","https://openalex.org/W3105302941","https://openalex.org/W3105872239","https://openalex.org/W3115683849","https://openalex.org/W4230674625","https://openalex.org/W4249303080","https://openalex.org/W4298876635","https://openalex.org/W4299890412","https://openalex.org/W4300448178","https://openalex.org/W569258332"],"related_works":["https://openalex.org/W50698531","https://openalex.org/W4248396893","https://openalex.org/W4243330733","https://openalex.org/W3131787954","https://openalex.org/W3118393464","https://openalex.org/W3101749733","https://openalex.org/W2535206775","https://openalex.org/W2065936395","https://openalex.org/W2056283567","https://openalex.org/W1975708617"],"abstract_inverted_index":{"Tweedie":[0,35,64,157],"models":[1,36,158],"can":[2,37,73,85,108,118],"be":[3,38,86],"used":[4],"to":[5,128,174],"analyze":[6],"nonnegative":[7],"continuous":[8],"data":[9,43],"with":[10,45,114],"a":[11,62,90],"probability":[12],"mass":[13],"at":[14],"zero.":[15],"There":[16],"have":[17],"been":[18],"wide":[19,91],"applications":[20,142],"in":[21,143,147,182],"natural":[22],"science,":[23,27],"healthcare":[24],"research,":[25],"actuarial":[26],"and":[28,55,67,82,132,139,145,153,164,185],"other":[29],"fields.":[30],"The":[31,178],"performance":[32],"of":[33,93,136],"existing":[34,156],"limited":[39],"on":[40],"today's":[41],"complex":[42],"problems":[44],"challenging":[46],"characteristics":[47],"such":[48],"as":[49],"nonlinear":[50,80,162],"effects,":[51],"high-order":[52,83,165],"interactions,":[53,166],"high-dimensionality":[54],"sparsity.":[56],"In":[57,103],"this":[58],"article,":[59],"we":[60],"propose":[61],"kernel":[63,94],"model,":[65],"Ktweedie,":[66],"its":[68],"sparse":[69],"variant,":[70],"SKtweedie,":[71],"that":[72],"simultaneously":[74],"address":[75],"the":[76,101,106,112,121,130,141,151,169,175],"above":[77],"challenges.":[78],"Specifically,":[79],"effects":[81,163],"interactions":[84],"flexibly":[87],"represented":[88],"through":[89],"range":[92],"functions,":[95],"which":[96],"is":[97,171,180],"fully":[98],"learned":[99],"from":[100],"data;":[102],"addition,":[104],"while":[105],"Ktweedie":[107,152],"handle":[109],"high-dimensional":[110],"data,":[111],"SKtweedie":[113,154],"integrated":[115],"variable":[116,133],"selection":[117,134],"further":[119],"improve":[120],"interpretability.":[122],"We":[123],"perform":[124],"extensive":[125],"simulation":[126],"studies":[127],"justify":[129],"prediction":[131],"accuracy":[135],"our":[137],"method,":[138],"demonstrate":[140],"ratemaking":[144],"loss-reserving":[146],"general":[148],"insurance.":[149],"Overall,":[150],"outperform":[155],"when":[159,168],"there":[160],"exist":[161],"particularly":[167],"dimensionality":[170],"high":[172],"relative":[173],"sample":[176],"size.":[177],"model":[179],"implemented":[181],"an":[183],"efficient":[184],"user-friendly":[186],"R":[187],"package":[188],"ktweedie":[189],"(https://cran.r-project.org/package=ktweedie).":[190]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4311243618","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2022,"cited_by_count":1}],"updated_date":"2025-04-19T18:17:40.984308","created_date":"2022-12-25"}