{"id":"https://openalex.org/W3044267241","doi":"https://doi.org/10.1080/00401706.2020.1800516","title":"Dynamic Multivariate Functional Data Modeling via Sparse Subspace Learning","display_name":"Dynamic Multivariate Functional Data Modeling via Sparse Subspace Learning","publication_year":2020,"publication_date":"2020-07-27","ids":{"openalex":"https://openalex.org/W3044267241","doi":"https://doi.org/10.1080/00401706.2020.1800516","mag":"3044267241"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/00401706.2020.1800516","pdf_url":null,"source":{"id":"https://openalex.org/S985303","display_name":"Technometrics","issn_l":"0040-1706","issn":["0040-1706","1537-2723"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/1804.03797","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100374122","display_name":"Chen Zhang","orcid":"https://orcid.org/0000-0002-4767-9597"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chen Zhang","raw_affiliation_strings":["Department of Industrial Engineering, Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Department of Industrial Engineering, Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100652901","display_name":"Hao Yan","orcid":"https://orcid.org/0000-0002-4322-7323"},"institutions":[{"id":"https://openalex.org/I55732556","display_name":"Arizona State University","ror":"https://ror.org/03efmqc40","country_code":"US","type":"education","lineage":["https://openalex.org/I55732556"]}],"countries":["US"],"is_corresponding":true,"raw_author_name":"Hao Yan","raw_affiliation_strings":["School of Computing, Informatics, & Decision Systems Engineering, Arizona State University, Tempe, AZ"],"affiliations":[{"raw_affiliation_string":"School of Computing, Informatics, & Decision Systems Engineering, Arizona State University, Tempe, AZ","institution_ids":["https://openalex.org/I55732556"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100363394","display_name":"Seungho Lee","orcid":"https://orcid.org/0000-0001-5254-9685"},"institutions":[{"id":"https://openalex.org/I2250650973","display_name":"Samsung (South Korea)","ror":"https://ror.org/04w3jy968","country_code":"KR","type":"company","lineage":["https://openalex.org/I2250650973"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Seungho Lee","raw_affiliation_strings":["Samsung Electronics, Suwon, South Korea"],"affiliations":[{"raw_affiliation_string":"Samsung Electronics, Suwon, South Korea","institution_ids":["https://openalex.org/I2250650973"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5022416209","display_name":"Jianjun Shi","orcid":"https://orcid.org/0000-0002-3774-9176"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jianjun Shi","raw_affiliation_strings":["H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA"],"affiliations":[{"raw_affiliation_string":"H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA","institution_ids":["https://openalex.org/I130701444"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":["https://openalex.org/A5100652901"],"corresponding_institution_ids":["https://openalex.org/I55732556"],"apc_list":null,"apc_paid":null,"fwci":2.659,"has_fulltext":false,"cited_by_count":23,"citation_normalized_percentile":{"value":0.999819,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"63","issue":"3","first_page":"370","last_page":"383"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10136","display_name":"Regularization and Variable Selection Methods","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10136","display_name":"Regularization and Variable Selection Methods","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes in Machine Learning","score":0.9727,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11871","display_name":"Detection and Handling of Multicollinearity in Regression Analysis","score":0.9716,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/functional-data","display_name":"Functional Data","score":0.579605},{"id":"https://openalex.org/keywords/high-dimensional-data","display_name":"High-Dimensional Data","score":0.536626},{"id":"https://openalex.org/keywords/sparse-models","display_name":"Sparse Models","score":0.530328},{"id":"https://openalex.org/keywords/mixed-effects-models","display_name":"Mixed-Effects Models","score":0.522895},{"id":"https://openalex.org/keywords/model-complexity","display_name":"Model Complexity","score":0.522137},{"id":"https://openalex.org/keywords/clustering-high-dimensional-data","display_name":"Clustering high-dimensional data","score":0.43322846}],"concepts":[{"id":"https://openalex.org/C12362212","wikidata":"https://www.wikidata.org/wiki/Q728435","display_name":"Linear subspace","level":2,"score":0.8029759},{"id":"https://openalex.org/C32834561","wikidata":"https://www.wikidata.org/wiki/Q660730","display_name":"Subspace topology","level":2,"score":0.74884355},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.6738738},{"id":"https://openalex.org/C27438332","wikidata":"https://www.wikidata.org/wiki/Q2873","display_name":"Principal component analysis","level":2,"score":0.6729873},{"id":"https://openalex.org/C71176878","wikidata":"https://www.wikidata.org/wiki/Q17014987","display_name":"Functional principal component analysis","level":3,"score":0.5923007},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.57388175},{"id":"https://openalex.org/C191178318","wikidata":"https://www.wikidata.org/wiki/Q2256906","display_name":"Thresholding","level":3,"score":0.52431643},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.49047205},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.45668188},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.4355416},{"id":"https://openalex.org/C184509293","wikidata":"https://www.wikidata.org/wiki/Q5136711","display_name":"Clustering high-dimensional data","level":3,"score":0.43322846},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4301651},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3911302},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.2704624},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.13080469},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/00401706.2020.1800516","pdf_url":null,"source":{"id":"https://openalex.org/S985303","display_name":"Technometrics","issn_l":"0040-1706","issn":["0040-1706","1537-2723"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1804.03797","pdf_url":"http://arxiv.org/pdf/1804.03797","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1804.03797","pdf_url":"http://arxiv.org/pdf/1804.03797","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":["https://openalex.org/W4394368559","https://openalex.org/W4394347606"],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W131856359","https://openalex.org/W1601511468","https://openalex.org/W1731081199","https://openalex.org/W1847142364","https://openalex.org/W1889272089","https://openalex.org/W1972127338","https://openalex.org/W1984185029","https://openalex.org/W1993962865","https://openalex.org/W2010824638","https://openalex.org/W2038395331","https://openalex.org/W2058564856","https://openalex.org/W2067042195","https://openalex.org/W2081746825","https://openalex.org/W2093242491","https://openalex.org/W2107838694","https://openalex.org/W2140514146","https://openalex.org/W2152669886","https://openalex.org/W2160283547","https://openalex.org/W2160299056","https://openalex.org/W2341990530","https://openalex.org/W2406547137","https://openalex.org/W2615383372","https://openalex.org/W2742973403","https://openalex.org/W2766710231","https://openalex.org/W2790665460","https://openalex.org/W2898949775","https://openalex.org/W2949537047","https://openalex.org/W3000930745","https://openalex.org/W3008164074","https://openalex.org/W3098834468"],"related_works":["https://openalex.org/W4294291164","https://openalex.org/W4289378085","https://openalex.org/W4287164812","https://openalex.org/W3213150849","https://openalex.org/W3172436493","https://openalex.org/W3100286349","https://openalex.org/W2896134808","https://openalex.org/W2386063599","https://openalex.org/W1975884855","https://openalex.org/W1887135636"],"abstract_inverted_index":{"Multivariate":[0],"functional":[1,75,157],"data":[2,19,76],"from":[3,86],"a":[4,12,68,114],"complex":[5,13],"system":[6,60],"are":[7,29,167],"naturally":[8],"high-dimensional":[9],"and":[10,47,89,107,144,178],"have":[11,39,96],"cross-correlation":[14,50,130],"structure.":[15],"The":[16,101,132],"complexity":[17],"of":[18,92,147,164,180],"structure":[20,51],"can":[21,103,127,134,150],"be":[22,104,135,151],"observed":[23],"as":[24,113],"that":[25,82],"(1)":[26],"some":[27,36],"functions":[28,84,91],"strongly":[30],"correlated":[31],"with":[32,43,98,172],"similar":[33],"features,":[34],"while":[35],"others":[37],"may":[38,52],"almost":[40],"no":[41],"cross-correlations":[42,97],"quite":[44],"diverse":[45],"features;":[46],"(2)":[48],"the":[49,59,93,111,121,129,139,145,154,165,176,181],"also":[53],"change":[54,123],"over":[55,124],"time":[56],"due":[57],"to":[58],"evolution.":[61],"With":[62],"this":[63,65],"regard,":[64],"article":[66],"presents":[67],"dynamic":[69],"subspace":[70,95,149],"learning":[71],"method":[72],"for":[73],"multivariate":[74],"modeling.":[77],"In":[78],"particular,":[79],"we":[80,126],"consider":[81],"different":[83,87],"come":[85],"subspaces,":[88],"only":[90],"same":[94],"each":[99,148],"other.":[100],"subspaces":[102],"automatically":[105],"formulated":[106],"learned":[108],"by":[109,138],"reformatting":[110],"problem":[112],"sparse":[115],"regression.":[116],"By":[117],"allowing":[118],"but":[119],"regularizing":[120],"regression":[122],"time,":[125],"describe":[128],"dynamics.":[131],"model":[133,166],"efficiently":[136],"estimated":[137],"fast":[140],"iterative":[141],"shrinkage-thresholding":[142],"algorithm,":[143],"features":[146],"extracted":[152],"using":[153],"smooth":[155],"multi-channel":[156],"principal":[158],"component":[159],"analysis.":[160],"Some":[161],"theoretical":[162],"properties":[163],"presented.":[168],"Numerical":[169],"studies,":[170,174],"together":[171],"case":[173],"demonstrate":[175],"efficiency":[177],"applicability":[179],"proposed":[182],"methodology.":[183]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3044267241","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":8},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":1}],"updated_date":"2024-11-28T05:12:46.545444","created_date":"2020-07-29"}