{"id":"https://openalex.org/W3008235065","doi":"https://doi.org/10.1080/00401706.2020.1733094","title":"Adaptive Convex Clustering of Generalized Linear Models With Application in Purchase Likelihood Prediction","display_name":"Adaptive Convex Clustering of Generalized Linear Models With Application in Purchase Likelihood Prediction","publication_year":2020,"publication_date":"2020-02-25","ids":{"openalex":"https://openalex.org/W3008235065","doi":"https://doi.org/10.1080/00401706.2020.1733094","mag":"3008235065"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/00401706.2020.1733094","pdf_url":null,"source":{"id":"https://openalex.org/S985303","display_name":"Technometrics","issn_l":"0040-1706","issn":["0040-1706","1537-2723"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5081916638","display_name":"Shuyu Chu","orcid":null},"institutions":[{"id":"https://openalex.org/I4210114115","display_name":"IBM Research - Thomas J. Watson Research Center","ror":"https://ror.org/0265w5591","country_code":"US","type":"facility","lineage":["https://openalex.org/I1341412227","https://openalex.org/I4210114115"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Shuyu Chu","raw_affiliation_strings":["IBM T. J. Watson Research Center, Yorktown Heights, NY"],"affiliations":[{"raw_affiliation_string":"IBM T. J. Watson Research Center, Yorktown Heights, NY","institution_ids":["https://openalex.org/I4210114115"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083662898","display_name":"Huijing Jiang","orcid":null},"institutions":[{"id":"https://openalex.org/I4210114115","display_name":"IBM Research - Thomas J. Watson Research Center","ror":"https://ror.org/0265w5591","country_code":"US","type":"facility","lineage":["https://openalex.org/I1341412227","https://openalex.org/I4210114115"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Huijing Jiang","raw_affiliation_strings":["IBM T. J. Watson Research Center, Yorktown Heights, NY"],"affiliations":[{"raw_affiliation_string":"IBM T. J. Watson Research Center, Yorktown Heights, NY","institution_ids":["https://openalex.org/I4210114115"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109702681","display_name":"Zhengliang Xue","orcid":null},"institutions":[{"id":"https://openalex.org/I4210114115","display_name":"IBM Research - Thomas J. Watson Research Center","ror":"https://ror.org/0265w5591","country_code":"US","type":"facility","lineage":["https://openalex.org/I1341412227","https://openalex.org/I4210114115"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zhengliang Xue","raw_affiliation_strings":["IBM T. J. Watson Research Center, Yorktown Heights, NY"],"affiliations":[{"raw_affiliation_string":"IBM T. J. Watson Research Center, Yorktown Heights, NY","institution_ids":["https://openalex.org/I4210114115"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5003817085","display_name":"Xinwei Deng","orcid":"https://orcid.org/0000-0002-1560-2405"},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"funder","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":true,"raw_author_name":"Xinwei Deng","raw_affiliation_strings":["Department of Statistics, Virginia Tech, Blacksburg, VA"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, Virginia Tech, Blacksburg, VA","institution_ids":["https://openalex.org/I859038795"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5003817085"],"corresponding_institution_ids":["https://openalex.org/I859038795"],"apc_list":null,"apc_paid":null,"fwci":0.509,"has_fulltext":false,"cited_by_count":6,"citation_normalized_percentile":{"value":0.775154,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":82},"biblio":{"volume":"63","issue":"2","first_page":"171","last_page":"183"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12114","display_name":"Sensory Analysis and Statistical Methods","score":0.9918,"subfield":{"id":"https://openalex.org/subfields/1106","display_name":"Food Science"},"field":{"id":"https://openalex.org/fields/11","display_name":"Agricultural and Biological Sciences"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T12114","display_name":"Sensory Analysis and Statistical Methods","score":0.9918,"subfield":{"id":"https://openalex.org/subfields/1106","display_name":"Food Science"},"field":{"id":"https://openalex.org/fields/11","display_name":"Agricultural and Biological Sciences"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9785,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12384","display_name":"Customer churn and segmentation","score":0.9706,"subfield":{"id":"https://openalex.org/subfields/1406","display_name":"Marketing"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.49838805}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.7122652},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6855857},{"id":"https://openalex.org/C2776436953","wikidata":"https://www.wikidata.org/wiki/Q5163215","display_name":"Consistency (knowledge bases)","level":2,"score":0.6421108},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.51964724},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.49838805},{"id":"https://openalex.org/C41587187","wikidata":"https://www.wikidata.org/wiki/Q1501882","display_name":"Generalized linear model","level":2,"score":0.4831328},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.47820568},{"id":"https://openalex.org/C2780801425","wikidata":"https://www.wikidata.org/wiki/Q5164392","display_name":"Construct (python library)","level":2,"score":0.4664874},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.45780775},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.28755423},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.2766466},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.22356409},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/00401706.2020.1733094","pdf_url":null,"source":{"id":"https://openalex.org/S985303","display_name":"Technometrics","issn_l":"0040-1706","issn":["0040-1706","1537-2723"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":["https://openalex.org/W4394276454","https://openalex.org/W4394543111"],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1491391313","https://openalex.org/W1499866971","https://openalex.org/W1586617512","https://openalex.org/W1731081199","https://openalex.org/W1977556410","https://openalex.org/W1998871699","https://openalex.org/W2010824638","https://openalex.org/W2020925091","https://openalex.org/W2081875724","https://openalex.org/W2118079952","https://openalex.org/W2127597613","https://openalex.org/W2128619838","https://openalex.org/W2166624956","https://openalex.org/W2177151190","https://openalex.org/W2402413559","https://openalex.org/W2559655401","https://openalex.org/W2963032456","https://openalex.org/W2963414980","https://openalex.org/W29756976","https://openalex.org/W3098834468","https://openalex.org/W3103253084","https://openalex.org/W3104808334","https://openalex.org/W4232932184","https://openalex.org/W4244393449","https://openalex.org/W4251352206","https://openalex.org/W4292363360","https://openalex.org/W4299797070","https://openalex.org/W4299828299"],"related_works":["https://openalex.org/W4388145910","https://openalex.org/W4312490297","https://openalex.org/W4248336175","https://openalex.org/W3009369890","https://openalex.org/W2391445434","https://openalex.org/W2381570729","https://openalex.org/W2366107444","https://openalex.org/W2032548952","https://openalex.org/W2031260042","https://openalex.org/W1976205134"],"abstract_inverted_index":{"In":[0,69],"the":[1,12,30,53,98,104,112,116,123],"pricing":[2,54],"of":[3,15,24,146,158],"customized":[4],"products,":[5],"it":[6,40],"is":[7,41,57,149],"challenging":[8],"to":[9,29,34,45,50,61,79,101],"accurately":[10],"predict":[11],"purchase":[13,37],"likelihood":[14],"potential":[16],"clients":[17],"for":[18,65,87,103,132],"each":[19],"personalized":[20,31],"request.":[21],"The":[22,91,144],"heterogeneity":[23],"customers":[25],"and":[26,83,135,142,155],"their":[27],"responses":[28],"products":[32],"leads":[33],"very":[35],"different":[36,66],"behavior.":[38],"Thus,":[39],"often":[42],"not":[43],"appropriate":[44],"use":[46],"a":[47,58],"single":[48],"model":[49,84,107,118],"analyze":[51],"all":[52],"data.":[55,161],"There":[56],"great":[59],"need":[60],"construct":[62],"distinctive":[63],"models":[64],"data":[67,81,95,113],"segments.":[68],"this":[70],"work,":[71],"we":[72,127],"propose":[73],"an":[74,129],"adaptive":[75],"convex":[76],"clustering":[77],"method":[78,93],"perform":[80],"segmentation":[82],"fitting":[85],"simultaneously":[86],"generalized":[88],"linear":[89],"models.":[90],"proposed":[92],"segments":[94],"points":[96,114],"using":[97],"fused":[99],"penalty":[100],"account":[102],"similarity":[105],"in":[106,140],"structures.":[108],"It":[109],"ensures":[110],"that":[111],"sharing":[115],"same":[117,124],"structure":[119],"are":[120],"grouped":[121],"into":[122],"segment.":[125],"Accordingly,":[126],"develop":[128],"efficient":[130],"algorithm":[131],"parameter":[133],"estimation":[134,141],"study":[136],"its":[137],"consistency":[138],"properties":[139],"clustering.":[143],"performance":[145],"our":[147],"approach":[148],"evaluated":[150],"by":[151],"both":[152],"numerical":[153],"examples":[154],"case":[156],"studies":[157],"real":[159],"business":[160]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3008235065","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1}],"updated_date":"2025-02-21T15:50:16.953533","created_date":"2020-03-06"}