{"id":"https://openalex.org/W3024310851","doi":"https://doi.org/10.1080/00207721.2020.1760957","title":"Neural congestion prediction system for trip modelling in heterogeneous spatio-temporal patterns","display_name":"Neural congestion prediction system for trip modelling in heterogeneous spatio-temporal patterns","publication_year":2020,"publication_date":"2020-05-12","ids":{"openalex":"https://openalex.org/W3024310851","doi":"https://doi.org/10.1080/00207721.2020.1760957","mag":"3024310851"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/00207721.2020.1760957","pdf_url":null,"source":{"id":"https://openalex.org/S129640837","display_name":"International Journal of Systems Science","issn_l":"0020-7721","issn":["0020-7721","1464-5319"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5002081133","display_name":"W. Elleuch","orcid":"https://orcid.org/0000-0002-8835-6110"},"institutions":[{"id":"https://openalex.org/I142899784","display_name":"University of Sfax","ror":"https://ror.org/04d4sd432","country_code":"TN","type":"education","lineage":["https://openalex.org/I142899784"]}],"countries":["TN"],"is_corresponding":true,"raw_author_name":"Wiam Elleuch","raw_affiliation_strings":["REGIM-Lab.: REsearch Groups in Intelligent Machines, University of Sfax, National Engineering School of Sfax (ENIS), Sfax, Tunisia"],"affiliations":[{"raw_affiliation_string":"REGIM-Lab.: REsearch Groups in Intelligent Machines, University of Sfax, National Engineering School of Sfax (ENIS), Sfax, Tunisia","institution_ids":["https://openalex.org/I142899784"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077387853","display_name":"Ali Wali","orcid":"https://orcid.org/0000-0002-8423-7923"},"institutions":[{"id":"https://openalex.org/I142899784","display_name":"University of Sfax","ror":"https://ror.org/04d4sd432","country_code":"TN","type":"education","lineage":["https://openalex.org/I142899784"]}],"countries":["TN"],"is_corresponding":false,"raw_author_name":"Ali Wali","raw_affiliation_strings":["REGIM-Lab.: REsearch Groups in Intelligent Machines, University of Sfax, National Engineering School of Sfax (ENIS), Sfax, Tunisia"],"affiliations":[{"raw_affiliation_string":"REGIM-Lab.: REsearch Groups in Intelligent Machines, University of Sfax, National Engineering School of Sfax (ENIS), Sfax, Tunisia","institution_ids":["https://openalex.org/I142899784"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5053613060","display_name":"Adel M. Alimi","orcid":"https://orcid.org/0000-0002-0642-3384"},"institutions":[{"id":"https://openalex.org/I142899784","display_name":"University of Sfax","ror":"https://ror.org/04d4sd432","country_code":"TN","type":"education","lineage":["https://openalex.org/I142899784"]}],"countries":["TN"],"is_corresponding":false,"raw_author_name":"Adel M. Alimi","raw_affiliation_strings":["REGIM-Lab.: REsearch Groups in Intelligent Machines, University of Sfax, National Engineering School of Sfax (ENIS), Sfax, Tunisia"],"affiliations":[{"raw_affiliation_string":"REGIM-Lab.: REsearch Groups in Intelligent Machines, University of Sfax, National Engineering School of Sfax (ENIS), Sfax, Tunisia","institution_ids":["https://openalex.org/I142899784"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5002081133"],"corresponding_institution_ids":["https://openalex.org/I142899784"],"apc_list":null,"apc_paid":null,"fwci":1.437,"has_fulltext":false,"cited_by_count":13,"citation_normalized_percentile":{"value":0.999928,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":"51","issue":"8","first_page":"1373","last_page":"1391"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10698","display_name":"Transportation Planning and Optimization","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C2779888511","wikidata":"https://www.wikidata.org/wiki/Q244156","display_name":"Traffic congestion","level":2,"score":0.7019923},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6114309},{"id":"https://openalex.org/C60229501","wikidata":"https://www.wikidata.org/wiki/Q18822","display_name":"Global Positioning System","level":2,"score":0.597501},{"id":"https://openalex.org/C160403385","wikidata":"https://www.wikidata.org/wiki/Q220543","display_name":"Queue","level":2,"score":0.57743466},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5620948},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.487956},{"id":"https://openalex.org/C64093975","wikidata":"https://www.wikidata.org/wiki/Q356677","display_name":"Floating car data","level":3,"score":0.4683539},{"id":"https://openalex.org/C47796450","wikidata":"https://www.wikidata.org/wiki/Q508378","display_name":"Intelligent transportation system","level":2,"score":0.46787807},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.4293518},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.3791833},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.20321792},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.18588209},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.14285886},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.10619366},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1080/00207721.2020.1760957","pdf_url":null,"source":{"id":"https://openalex.org/S129640837","display_name":"International Journal of Systems Science","issn_l":"0020-7721","issn":["0020-7721","1464-5319"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.77}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W1544613517","https://openalex.org/W1586335931","https://openalex.org/W1867549856","https://openalex.org/W1881724709","https://openalex.org/W1968398255","https://openalex.org/W1973063495","https://openalex.org/W1973943669","https://openalex.org/W1977405947","https://openalex.org/W2011529478","https://openalex.org/W2022771089","https://openalex.org/W2024558842","https://openalex.org/W2030645388","https://openalex.org/W2032717371","https://openalex.org/W2040297119","https://openalex.org/W2057918527","https://openalex.org/W2073640212","https://openalex.org/W2079662306","https://openalex.org/W2082533141","https://openalex.org/W2089277853","https://openalex.org/W2274750026","https://openalex.org/W2483705917","https://openalex.org/W2569942622","https://openalex.org/W2593182953","https://openalex.org/W2610052998","https://openalex.org/W2767152624","https://openalex.org/W2771098373","https://openalex.org/W2795276038","https://openalex.org/W2904262414","https://openalex.org/W2947457582","https://openalex.org/W3015379812","https://openalex.org/W4243821471","https://openalex.org/W4251609852"],"related_works":["https://openalex.org/W4390341805","https://openalex.org/W4386289889","https://openalex.org/W4360619413","https://openalex.org/W4210448965","https://openalex.org/W3117279048","https://openalex.org/W3069032","https://openalex.org/W2982084411","https://openalex.org/W2973192971","https://openalex.org/W2945875309","https://openalex.org/W2005409769"],"abstract_inverted_index":{"Until":[0],"recently,":[1],"urban":[2,69,122],"cities":[3],"have":[4],"faced":[5],"an":[6,10,30],"increasing":[7],"demand":[8],"for":[9],"efficient":[11],"system":[12,47,81,102,147],"able":[13,53],"to":[14,17,39,54,93,152],"help":[15],"drivers":[16,83],"discover":[18],"the":[19,24,56,85,89,100,128],"congested":[20],"roads":[21],"and":[22,77,88,108,132,140],"avoid":[23],"long":[25],"queues.":[26],"In":[27],"this":[28],"paper,":[29],"Intelligent":[31],"Traffic":[32],"Congestion":[33],"Prediction":[34],"System":[35,112],"(ITCPS)":[36],"was":[37,103],"developed":[38,80,101],"predict":[40],"traffic":[41,59,66],"congestion":[42,139],"states":[43],"in":[44,68,119,162],"roads.":[45],"The":[46,79,97,136],"embeds":[48],"a":[49,106],"Neural":[50],"Network":[51],"architecture":[52],"handle":[55],"variation":[57],"of":[58,99,138],"changes.":[60],"It":[61],"takes":[62],"into":[63],"account":[64],"various":[65],"patterns":[67],"regions":[70],"as":[71,73,125,127],"well":[72,126,160],"highways":[74,129],"during":[75,169],"workdays":[76],"free-days.":[78],"provides":[82],"with":[84],"fastest":[86],"path":[87],"estimated":[90],"travel":[91,141],"time":[92,142],"reach":[94],"their":[95],"destination.":[96],"performance":[98],"tested":[104],"using":[105],"big":[107],"real-world":[109],"Global":[110],"Positioning":[111],"(GPS)":[113],"database":[114],"gathered":[115],"from":[116],"vehicles":[117],"circulating":[118],"Sfax":[120,131],"city":[121],"areas,":[123],"Tunisia":[124],"linking":[130],"other":[133,153],"Tunisian":[134],"cities.":[135],"results":[137],"prediction":[143],"provided":[144],"by":[145],"our":[146,157],"show":[148],"promise":[149],"when":[150],"compared":[151],"non-parametric":[154],"techniques.":[155],"Moreover,":[156],"model":[158],"performs":[159],"even":[161],"cross-regions":[163],"whose":[164],"data":[165],"were":[166],"not":[167],"used":[168],"training":[170],"phase.":[171]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3024310851","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":1}],"updated_date":"2025-01-04T18:05:31.933383","created_date":"2020-05-21"}