{"id":"https://openalex.org/W3010777708","doi":"https://doi.org/10.1049/iet-ipr.2019.1404","title":"Robust graph regularised sparse matrix regression for two\u2010dimensional supervised feature selection","display_name":"Robust graph regularised sparse matrix regression for two\u2010dimensional supervised feature selection","publication_year":2020,"publication_date":"2020-03-11","ids":{"openalex":"https://openalex.org/W3010777708","doi":"https://doi.org/10.1049/iet-ipr.2019.1404","mag":"3010777708"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1049/iet-ipr.2019.1404","pdf_url":"https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ipr.2019.1404","source":{"id":"https://openalex.org/S83215360","display_name":"IET Image Processing","issn_l":"1751-9659","issn":["1751-9659","1751-9667"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310311714","host_organization_name":"Institution of Engineering and Technology","host_organization_lineage":["https://openalex.org/P4310311714"],"host_organization_lineage_names":["Institution of Engineering and Technology"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ipr.2019.1404","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5086185787","display_name":"Xiuhong Chen","orcid":null},"institutions":[{"id":"https://openalex.org/I111599522","display_name":"Jiangnan University","ror":"https://ror.org/04mkzax54","country_code":"CN","type":"funder","lineage":["https://openalex.org/I111599522"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Xiuhong Chen","raw_affiliation_strings":["Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Jiangsu Wuxi, People's Republic of China","School of Digital Media, Jiangnan University, Jiangsu Wuxi, People's Republic of China"],"affiliations":[{"raw_affiliation_string":"School of Digital Media, Jiangnan University, Jiangsu Wuxi, People's Republic of China","institution_ids":["https://openalex.org/I111599522"]},{"raw_affiliation_string":"Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Jiangsu Wuxi, People's Republic of China","institution_ids":["https://openalex.org/I111599522"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5023564732","display_name":"Yun Lu","orcid":"https://orcid.org/0000-0003-0387-7062"},"institutions":[{"id":"https://openalex.org/I111599522","display_name":"Jiangnan University","ror":"https://ror.org/04mkzax54","country_code":"CN","type":"funder","lineage":["https://openalex.org/I111599522"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yun Lu","raw_affiliation_strings":["School of Digital Media, Jiangnan University, Jiangsu Wuxi, People's Republic of China"],"affiliations":[{"raw_affiliation_string":"School of Digital Media, Jiangnan University, Jiangsu Wuxi, People's Republic of China","institution_ids":["https://openalex.org/I111599522"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5086185787"],"corresponding_institution_ids":["https://openalex.org/I111599522"],"apc_list":{"value":2000,"currency":"EUR","value_usd":2200},"apc_paid":null,"fwci":0.383,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.572974,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":78},"biblio":{"volume":"14","issue":"9","first_page":"1740","last_page":"1749"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9925,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9866,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.4544795}],"concepts":[{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.6659757},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.63202447},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5867435},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.555565},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.5340518},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5197927},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.4544795},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.4501009},{"id":"https://openalex.org/C56372850","wikidata":"https://www.wikidata.org/wiki/Q1050404","display_name":"Sparse matrix","level":3,"score":0.4470119},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.31675798},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.15439132},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.14784378},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1049/iet-ipr.2019.1404","pdf_url":"https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ipr.2019.1404","source":{"id":"https://openalex.org/S83215360","display_name":"IET Image Processing","issn_l":"1751-9659","issn":["1751-9659","1751-9667"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310311714","host_organization_name":"Institution of Engineering and Technology","host_organization_lineage":["https://openalex.org/P4310311714"],"host_organization_lineage_names":["Institution of Engineering and Technology"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1049/iet-ipr.2019.1404","pdf_url":"https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ipr.2019.1404","source":{"id":"https://openalex.org/S83215360","display_name":"IET Image Processing","issn_l":"1751-9659","issn":["1751-9659","1751-9667"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310311714","host_organization_name":"Institution of Engineering and Technology","host_organization_lineage":["https://openalex.org/P4310311714"],"host_organization_lineage_names":["Institution of Engineering and Technology"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"No poverty","id":"https://metadata.un.org/sdg/1","score":0.53}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W141062567","https://openalex.org/W1871180460","https://openalex.org/W1975172027","https://openalex.org/W19842529","https://openalex.org/W1996452481","https://openalex.org/W1997201895","https://openalex.org/W2006793117","https://openalex.org/W2009501510","https://openalex.org/W2021014470","https://openalex.org/W2043080228","https://openalex.org/W2049783800","https://openalex.org/W2053090063","https://openalex.org/W2069421937","https://openalex.org/W2096044434","https://openalex.org/W2100551846","https://openalex.org/W2100659887","https://openalex.org/W2103560185","https://openalex.org/W2121647436","https://openalex.org/W2123921160","https://openalex.org/W2127409454","https://openalex.org/W2137570937","https://openalex.org/W2142058898","https://openalex.org/W2142081666","https://openalex.org/W2148633389","https://openalex.org/W2164071167","https://openalex.org/W2168901348","https://openalex.org/W2171837816","https://openalex.org/W2257217404","https://openalex.org/W2395729379","https://openalex.org/W2398147772","https://openalex.org/W2623516681","https://openalex.org/W2792035262","https://openalex.org/W2799061466","https://openalex.org/W2900068376","https://openalex.org/W2910587455","https://openalex.org/W4205687621","https://openalex.org/W4229749918"],"related_works":["https://openalex.org/W4387560237","https://openalex.org/W4287713161","https://openalex.org/W4285148873","https://openalex.org/W2805810264","https://openalex.org/W2557895864","https://openalex.org/W2384787007","https://openalex.org/W2081219400","https://openalex.org/W2076468490","https://openalex.org/W2045476623","https://openalex.org/W1970330626"],"abstract_inverted_index":{"Bilinear":[0],"matrix":[1,5,13,28,55,89],"regression":[2,23,29,56,90,121],"based":[3,68],"on":[4,69,138],"data":[6,14,140],"can":[7,115,125],"directly":[8],"select":[9],"the":[10,26,34,39,64,70,76,80,87,117,127,133,143,146],"features":[11],"from":[12],"by":[15,131],"deploying":[16],"several":[17,139],"couples":[18],"of":[19,38,145],"left":[20,118],"and":[21,79,102,119],"right":[22,120],"matrices.":[24],"However,":[25],"existing":[27],"methods":[30],"do":[31],"not":[32,113],"consider":[33],"local":[35],"geometric":[36],"structure":[37,130],"samples,":[40],"which":[41],"results":[42],"in":[43,107],"poor":[44],"classification":[45],"performance.":[46],"This":[47],"study":[48],"proposes":[49],"a":[50],"robust":[51],"graph":[52,67],"regularised":[53],"sparse":[54],"method":[57,112],"for":[58],"two\u2010dimensional":[59],"supervised":[60],"feature":[61],"selection,":[62],"where":[63],"intra\u2010class":[65],"compactness":[66],"manifold":[71],"learning":[72],"is":[73,96],"used":[74],"as":[75,82],"regularisation":[77],"item,":[78],"\u2010norm":[81],"loss":[83],"functions":[84],"to":[85,99],"establish":[86],"authors\u2019":[88],"model.":[91],"An":[92],"alternating":[93],"optimisation":[94],"algorithm":[95],"also":[97,124],"devised":[98],"solve":[100],"it":[101],"give":[103],"its":[104],"closed\u2010form":[105],"solutions":[106],"each":[108],"iteration.":[109],"The":[110],"proposed":[111,147],"only":[114],"learn":[116],"matrices,":[122],"but":[123],"preserve":[126],"intrinsic":[128],"geometry":[129],"using":[132],"label":[134],"information.":[135],"Extensive":[136],"experiments":[137],"sets":[141],"demonstrate":[142],"superiority":[144],"method.":[148]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3010777708","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":1}],"updated_date":"2025-04-23T20:55:25.549510","created_date":"2020-03-23"}