{"id":"https://openalex.org/W2024813609","doi":"https://doi.org/10.1021/ci990061k","title":"Nonlinear Multivariate Regression Outperforms Several Concisely Designed Neural Networks on Three QSPR Data Sets","display_name":"Nonlinear Multivariate Regression Outperforms Several Concisely Designed Neural Networks on Three QSPR Data Sets","publication_year":2000,"publication_date":"2000-01-21","ids":{"openalex":"https://openalex.org/W2024813609","doi":"https://doi.org/10.1021/ci990061k","mag":"2024813609","pmid":"https://pubmed.ncbi.nlm.nih.gov/10761147"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1021/ci990061k","pdf_url":null,"source":{"id":"https://openalex.org/S171559003","display_name":"Journal of Chemical Information and Computer Sciences","issn_l":"0095-2338","issn":["0095-2338","1520-5142"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310320006","host_organization_name":"American Chemical Society","host_organization_lineage":["https://openalex.org/P4310320006"],"host_organization_lineage_names":["American Chemical Society"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5063584815","display_name":"Bono Lu\u010di\u0107","orcid":"https://orcid.org/0000-0001-7232-2007"},"institutions":[],"countries":["HR"],"is_corresponding":false,"raw_author_name":"Bono Lu\u010di\u0107","raw_affiliation_strings":["The Rugjer Bo\u0161kovi\u0107 Institute, P.O. Box 1016, HR-10001 Zagreb, Croatia, Faculty of Agriculture, The Josip Juraj Strossmayer University, P.O. Box 719, HR-31001 Osijek, Croatia"],"affiliations":[{"raw_affiliation_string":"The Rugjer Bo\u0161kovi\u0107 Institute, P.O. Box 1016, HR-10001 Zagreb, Croatia, Faculty of Agriculture, The Josip Juraj Strossmayer University, P.O. Box 719, HR-31001 Osijek, Croatia","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014867785","display_name":"Dragan Ami\u0107","orcid":null},"institutions":[],"countries":["HR"],"is_corresponding":false,"raw_author_name":"Dragan Ami\u0107","raw_affiliation_strings":["The Rugjer Bo\u0161kovi\u0107 Institute, P.O. Box 1016, HR-10001 Zagreb, Croatia, Faculty of Agriculture, The Josip Juraj Strossmayer University, P.O. Box 719, HR-31001 Osijek, Croatia"],"affiliations":[{"raw_affiliation_string":"The Rugjer Bo\u0161kovi\u0107 Institute, P.O. Box 1016, HR-10001 Zagreb, Croatia, Faculty of Agriculture, The Josip Juraj Strossmayer University, P.O. Box 719, HR-31001 Osijek, Croatia","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5008017709","display_name":"Nenad Trinajsti\u0107","orcid":null},"institutions":[],"countries":["HR"],"is_corresponding":false,"raw_author_name":"Nenad Trinajsti\u0107","raw_affiliation_strings":["The Rugjer Bo\u0161kovi\u0107 Institute, P.O. Box 1016, HR-10001 Zagreb, Croatia, Faculty of Agriculture, The Josip Juraj Strossmayer University, P.O. Box 719, HR-31001 Osijek, Croatia"],"affiliations":[{"raw_affiliation_string":"The Rugjer Bo\u0161kovi\u0107 Institute, P.O. Box 1016, HR-10001 Zagreb, Croatia, Faculty of Agriculture, The Josip Juraj Strossmayer University, P.O. Box 719, HR-31001 Osijek, Croatia","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":8.48,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":52,"citation_normalized_percentile":{"value":0.886781,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":"40","issue":"2","first_page":"403","last_page":"413"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9084,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9084,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C164126121","wikidata":"https://www.wikidata.org/wiki/Q766383","display_name":"Quantitative structure\u2013activity relationship","level":2,"score":0.8008607},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.775681},{"id":"https://openalex.org/C64946054","wikidata":"https://www.wikidata.org/wiki/Q4874476","display_name":"Bayesian multivariate linear regression","level":3,"score":0.64595807},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6452771},{"id":"https://openalex.org/C46889948","wikidata":"https://www.wikidata.org/wiki/Q2755024","display_name":"Nonlinear regression","level":3,"score":0.5747423},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.5697014},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.56702626},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.46834084},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45793083},{"id":"https://openalex.org/C48921125","wikidata":"https://www.wikidata.org/wiki/Q10861030","display_name":"Linear regression","level":2,"score":0.45225194},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.424576},{"id":"https://openalex.org/C44882253","wikidata":"https://www.wikidata.org/wiki/Q3455882","display_name":"Multivariate adaptive regression splines","level":4,"score":0.41963077},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.3798887},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.37632698},{"id":"https://openalex.org/C186060115","wikidata":"https://www.wikidata.org/wiki/Q30336093","display_name":"Biological system","level":1,"score":0.33105236},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3195005},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.25606456},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.052205026},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1021/ci990061k","pdf_url":null,"source":{"id":"https://openalex.org/S171559003","display_name":"Journal of Chemical Information and Computer Sciences","issn_l":"0095-2338","issn":["0095-2338","1520-5142"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310320006","host_organization_name":"American Chemical Society","host_organization_lineage":["https://openalex.org/P4310320006"],"host_organization_lineage_names":["American Chemical Society"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/10761147","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":6,"referenced_works":["https://openalex.org/W1966751326","https://openalex.org/W2031494703","https://openalex.org/W2063251150","https://openalex.org/W2083534494","https://openalex.org/W2088365557","https://openalex.org/W2953212320"],"related_works":["https://openalex.org/W4386365924","https://openalex.org/W4309298396","https://openalex.org/W3132021049","https://openalex.org/W3105952268","https://openalex.org/W3036649152","https://openalex.org/W2969801794","https://openalex.org/W2606692828","https://openalex.org/W2074089485","https://openalex.org/W2034357478","https://openalex.org/W1991715599"],"abstract_inverted_index":{"Neural":[0],"networks":[1],"(NNs)":[2],"are":[3,20,54,78,365],"accepted":[4],"as":[5],"the":[6,17,32,48,58,63,68,74,82,93,99,115,142,156,161,170,188,197,204,244,249,269,274,281,286,289,296,317,324,335,356,361,369,377,381],"most":[7,143],"powerful":[8,119],"nonlinear":[9,50,75,97,345,362],"technique":[10],"in":[11,92,146,242,264,315],"QSAR":[12],"and":[13,101,109,129,169,219,223,235,352,384],"QSPR":[14],"modeling.":[15],"However,":[16],"NN":[18,85,172,230,305,358,370],"models":[19,53,77,89,231,347,364],"often":[21],"very":[22],"robust,":[23],"containing":[24],"a":[25,341],"large":[26],"number":[27],"of":[28,104,117,153,166,182,184,200,206,208,280],"parameters":[29],"optimized":[30],"during":[31],"training":[33],"procedure.":[34],"We":[35],"have":[36],"recently":[37],"found":[38],"(J.":[39],"Chem.":[40],"Inf.":[41],"Comput.":[42],"Sci.":[43],"1999,":[44],"39,":[45],"121-132)":[46],"that":[47,268],"simpler":[49,367],"multiregression":[51],"(MR)":[52],"significantly":[55,366],"better":[56,80,349],"than":[57,81,355,368],"robust":[59],"NNs,":[60],"according":[61],"to":[62,111,140,332,375],"same":[64],"statistical":[65],"parameters.":[66],"In":[67,203,284],"present":[69],"paper":[70],"we":[71],"investigated":[72],"whether":[73],"MR":[76,88,147,158,190,225,251,299,326,346,363],"also":[79,262],"concisely":[83],"designed":[84],"models.":[86,148,359],"Nonlinear":[87],"were":[90,107,138,215],"generated":[91],"following":[94],"way.":[95],"First,":[96],"terms,":[98],"2-fold":[100],"3-fold":[102],"cross-products":[103],"initial":[105,112,282],"descriptors,":[106],"calculated":[108],"added":[110],"descriptors.":[113,283,385],"Then,":[114],"combination":[116],"two":[118],"techniques":[120],"for":[121,125,131,278,320,343],"descriptor":[122],"selection":[123,128],"(CROMRsel":[124],"\"the":[126],"best\"":[127],"CROMRiisel":[130],"approximative,":[132],"\"i":[133],"by":[134],"i\"":[135],"stepwise":[136],"selection)":[137],"used":[139,277],"detect":[141],"important":[144],"descriptors":[145],"For":[149],"boiling":[150],"points":[151],"(BPs)":[152],"150":[154],"alkanes":[155],"20-descriptor":[157],"model":[159,173,191,252,270,300,327],"produced":[160],"cross-validated":[162],"(CV)":[163],"standard":[164,198,213,240],"error":[165,199,241],"2.88":[167],"K,":[168],"best":[171,229,297],"(with":[174],"70-80":[175],"adjusted":[176,232,309],"weights)":[177],"had":[178],"3.60":[179],"K.":[180,202],"Prediction":[181],"BPs":[183],"50":[185,308],"compounds":[186,322],"using":[187,248,295,304,323],"17-descriptor":[189],"(obtained":[192],"on":[193,254,273],"100":[194],"compounds)":[195],"gave":[196],"3.58":[201],"case":[205],"modeling":[207,285],"243":[209],"chemical":[210,246],"shifts":[211,247],"CV":[212,290,312],"errors":[214],"(in":[216],"ppm)":[217],"0.89":[218],"1.19":[220],"with":[221,306],"15-":[222],"9-descriptor":[224],"models,":[226,371],"respectively.":[227],"The":[228,239,311],"60-90":[233],"weights":[234],"achieved":[236],"1.42":[237],"ppm.":[238,259],"predicting":[243,316],"83":[245],"10-descriptor":[250],"obtained":[253,303],"160":[255],"samples":[256],"was":[257,293,328],"1.25":[258],"It":[260],"is":[261],"shown":[263],"this":[265],"data":[266],"set":[267],"quality":[271],"depends":[272],"scaling":[275],"procedure":[276],"transformation":[279],"sublimation":[287,318],"enthalpy":[288],"correlation":[291,313],"coefficient":[292,314],"0.97":[294],"4-descriptor":[298,325],"versus":[301],"0.93":[302],"approximately":[307],"weights.":[310],"enthalpies":[319],"21":[321],"0.98.":[329],"This":[330],"is,":[331],"our":[333],"knowledge,":[334],"first":[336],"unambiguous":[337],"result":[338],"which":[339,372],"shows":[340],"way":[342],"obtaining":[344],"having":[348],"fitted,":[350],"cross-validated,":[351],"predictive":[353],"performances":[354],"corresponding":[357],"Moreover,":[360],"allows":[373],"one":[374],"establish":[376],"functional":[378],"relationships":[379],"between":[380],"modeled":[382],"property/activity":[383]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2024813609","counts_by_year":[{"year":2022,"cited_by_count":4},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":2},{"year":2016,"cited_by_count":1},{"year":2012,"cited_by_count":1}],"updated_date":"2025-03-18T22:06:45.850837","created_date":"2016-06-24"}