{"id":"https://openalex.org/W1971315259","doi":"https://doi.org/10.1021/ci200166t","title":"Enhancing the Accuracy of Chemogenomic Models with a Three-Dimensional Binding Site Kernel","display_name":"Enhancing the Accuracy of Chemogenomic Models with a Three-Dimensional Binding Site Kernel","publication_year":2011,"publication_date":"2011-06-06","ids":{"openalex":"https://openalex.org/W1971315259","doi":"https://doi.org/10.1021/ci200166t","mag":"1971315259","pmid":"https://pubmed.ncbi.nlm.nih.gov/21644501"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1021/ci200166t","pdf_url":null,"source":{"id":"https://openalex.org/S167262187","display_name":"Journal of Chemical Information and Modeling","issn_l":"1549-9596","issn":["1549-9596","1549-960X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320006","host_organization_name":"American Chemical Society","host_organization_lineage":["https://openalex.org/P4310320006"],"host_organization_lineage_names":["American Chemical Society"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5027894107","display_name":"Jamel Meslamani","orcid":"https://orcid.org/0000-0002-0115-1527"},"institutions":[{"id":"https://openalex.org/I1294671590","display_name":"Centre National de la Recherche Scientifique","ror":"https://ror.org/02feahw73","country_code":"FR","type":"government","lineage":["https://openalex.org/I1294671590"]},{"id":"https://openalex.org/I68947357","display_name":"Universit\u00e9 de Strasbourg","ror":"https://ror.org/00pg6eq24","country_code":"FR","type":"funder","lineage":["https://openalex.org/I68947357"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Jamel Meslamani","raw_affiliation_strings":["Structural Chemogenomics, Laboratory of Therapeutical Innovation, UMR 7200 CNRS, University of Strasbourg, F-67400 Illkirch, France."],"affiliations":[{"raw_affiliation_string":"Structural Chemogenomics, Laboratory of Therapeutical Innovation, UMR 7200 CNRS, University of Strasbourg, F-67400 Illkirch, France.","institution_ids":["https://openalex.org/I1294671590","https://openalex.org/I68947357"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5037175705","display_name":"Didier Rognan","orcid":"https://orcid.org/0000-0002-0577-641X"},"institutions":[{"id":"https://openalex.org/I68947357","display_name":"Universit\u00e9 de Strasbourg","ror":"https://ror.org/00pg6eq24","country_code":"FR","type":"funder","lineage":["https://openalex.org/I68947357"]},{"id":"https://openalex.org/I1294671590","display_name":"Centre National de la Recherche Scientifique","ror":"https://ror.org/02feahw73","country_code":"FR","type":"government","lineage":["https://openalex.org/I1294671590"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Didier Rognan","raw_affiliation_strings":["Structural Chemogenomics, Laboratory of Therapeutical Innovation, UMR 7200 CNRS, University of Strasbourg, F-67400 Illkirch, France."],"affiliations":[{"raw_affiliation_string":"Structural Chemogenomics, Laboratory of Therapeutical Innovation, UMR 7200 CNRS, University of Strasbourg, F-67400 Illkirch, France.","institution_ids":["https://openalex.org/I68947357","https://openalex.org/I1294671590"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":5.81,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":34,"citation_normalized_percentile":{"value":0.88934,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"51","issue":"7","first_page":"1593","last_page":"1603"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10044","display_name":"Protein Structure and Dynamics","score":0.9921,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.51777256}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.681261},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.575619},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.5510814},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.51777256},{"id":"https://openalex.org/C122280245","wikidata":"https://www.wikidata.org/wiki/Q620622","display_name":"Kernel method","level":3,"score":0.49396473},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.47256985},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42197606},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3628733},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.25671718},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D023281","descriptor_name":"Genomics","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D008957","descriptor_name":"Models, Genetic","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D001665","descriptor_name":"Binding Sites","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016503","descriptor_name":"Drug Delivery Systems","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D008024","descriptor_name":"Ligands","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D011485","descriptor_name":"Protein Binding","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1021/ci200166t","pdf_url":null,"source":{"id":"https://openalex.org/S167262187","display_name":"Journal of Chemical Information and Modeling","issn_l":"1549-9596","issn":["1549-9596","1549-960X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320006","host_organization_name":"American Chemical Society","host_organization_lineage":["https://openalex.org/P4310320006"],"host_organization_lineage_names":["American Chemical Society"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://hal.science/hal-00620864","pdf_url":null,"source":{"id":"https://openalex.org/S4306402512","display_name":"HAL (Le Centre pour la Communication Scientifique Directe)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1294671590","host_organization_name":"Centre National de la Recherche Scientifique","host_organization_lineage":["https://openalex.org/I1294671590"],"host_organization_lineage_names":["Centre National de la Recherche Scientifique"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/21644501","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.67}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":34,"referenced_works":["https://openalex.org/W1972773608","https://openalex.org/W1979914800","https://openalex.org/W1982131304","https://openalex.org/W1986087295","https://openalex.org/W1986684432","https://openalex.org/W1988037271","https://openalex.org/W1988259820","https://openalex.org/W1998643444","https://openalex.org/W2003635842","https://openalex.org/W2007287574","https://openalex.org/W2009313526","https://openalex.org/W2031082559","https://openalex.org/W2040595595","https://openalex.org/W2049454409","https://openalex.org/W2059274030","https://openalex.org/W2060851522","https://openalex.org/W2066345214","https://openalex.org/W2086380285","https://openalex.org/W2092285329","https://openalex.org/W2096864392","https://openalex.org/W2112912103","https://openalex.org/W2122995608","https://openalex.org/W2127553917","https://openalex.org/W2128245586","https://openalex.org/W2130479394","https://openalex.org/W2130606967","https://openalex.org/W2135835957","https://openalex.org/W2137507165","https://openalex.org/W2148972970","https://openalex.org/W2155894387","https://openalex.org/W2162011385","https://openalex.org/W2163204906","https://openalex.org/W4211208250","https://openalex.org/W61304648"],"related_works":["https://openalex.org/W4386075310","https://openalex.org/W4248019443","https://openalex.org/W3123056048","https://openalex.org/W2169565408","https://openalex.org/W2150638158","https://openalex.org/W2127229869","https://openalex.org/W2121506664","https://openalex.org/W2095626363","https://openalex.org/W2089892314","https://openalex.org/W1603091392"],"abstract_inverted_index":{"Computational":[0],"chemogenomic":[1,47,91,214,264,284],"(or":[2],"proteochemometric)":[3],"methods":[4],"predict":[5],"target-ligand":[6,26,102,138,172,203,237],"interactions":[7],"by":[8],"training":[9,37],"machine":[10,122],"learning":[11],"algorithms":[12],"on":[13],"known":[14,106,280],"experimental":[15],"data":[16,191],"in":[17,55,90,111,118,135,192,205,235],"order":[18],"to":[19,63,160,230,270,290],"distinguish":[20],"attributes":[21],"of":[22,105,178,186,243,279],"true":[23],"from":[24,75,80,141],"false":[25,143],"pairs.":[27],"Many":[28],"ligand":[29,116,218,253,268,288],"and":[30,38,169,181,219],"target":[31,59,77,96,127,133,220,273,293],"descriptors":[32,60],"can":[33,295],"be":[34,157,297],"used":[35,94,110,298],"for":[36,174,239,277,304],"predicting":[39,236],"binary":[40],"associations":[41,173],"or":[42,66,79,150],"even":[43],"binding":[44,103],"affinities.":[45],"Several":[46],"studies":[48],"have":[49],"not":[50,88],"noticed":[51],"any":[52],"real":[53],"benefit":[54],"using":[56],"3-D":[57,84,126],"structural":[58],"with":[61,113,162,299],"respect":[62],"simpler":[64,223],"sequence-based":[65,132,283,292],"property-based":[67],"information.":[68],"To":[69],"assess":[70],"whether":[71],"this":[72],"observation":[73],"results":[74],"inaccurate":[76],"description":[78],"the":[81,99,125,146,187,305],"fact":[82],"that":[83,213],"information":[85,221,254],"is":[86,258],"simply":[87],"required":[89],"modeling,":[92],"we":[93],"a":[95,114,119,131,193,240,267,271,287,291,300],"kernel":[97,117,128,134,269,289],"measuring":[98],"distance":[100],"between":[101],"sites":[104],"X-ray":[107],"structures.":[108],"When":[109],"combination":[112],"standard":[115],"support":[120],"vector":[121],"(SVM)":[123],"classifier,":[124],"significantly":[129],"outperforms":[130],"discriminating":[136],"2882":[137],"PDB":[139],"complexes":[140],"9128":[142],"pairs,":[144],"whatever":[145],"modeling":[147,233],"procedure":[148],"(local":[149],"global).":[151],"The":[152,208],"best":[153],"SVM":[154],"models":[155,215,247,265,285],"could":[156],"successfully":[158],"applied":[159],"predict,":[161],"very":[163,301],"high":[164],"recall":[165],"(70%),":[166],"precision":[167],"(99%),":[168,171],"specificity":[170],"an":[175],"external":[176],"set":[177],"14,117":[179],"ligands":[180],"531":[182],"targets.":[183,307],"In":[184],"most":[185],"cases,":[188],"pooling":[189],"all":[190],"global":[194],"model":[195],"gave":[196],"better":[197],"statistics":[198],"than":[199],"just":[200],"discretizing":[201],"specific":[202],"subspaces":[204],"local":[206],"models.":[207,225],"current":[209],"study":[210],"clearly":[211],"demonstrates":[212],"taking":[216],"both":[217],"outperform":[222],"ligand-based":[224,246],"It":[226],"also":[227],"permits":[228],"one":[229],"design":[231],"good":[232,302],"practices":[234],"pairing":[238],"large":[241],"array":[242],"targets:":[244],"(i)":[245],"are":[248,275],"precise":[249],"enough":[250],"if":[251,261],"sufficient":[252],"(>40-50":[255],"diverse":[256],"ligands)":[257],"known;":[259],"(ii)":[260],"not,":[262],"structure-based":[263,272],"(associating":[266,286],"kernel)":[274,294],"recommended":[276],"proteins":[278],"holostructures;":[281],"(iii)":[282],"still":[296],"accuracy":[303],"remaining":[306]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1971315259","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2021,"cited_by_count":2},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":3},{"year":2016,"cited_by_count":3},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":5},{"year":2013,"cited_by_count":10},{"year":2012,"cited_by_count":3}],"updated_date":"2025-03-19T18:42:01.295086","created_date":"2016-06-24"}