{"id":"https://openalex.org/W4401937236","doi":"https://doi.org/10.1021/acs.jcim.4c00643","title":"Multitask Learning on Graph Convolutional Residual Neural Networks for Screening of Multitarget Anticancer Compounds","display_name":"Multitask Learning on Graph Convolutional Residual Neural Networks for Screening of Multitarget Anticancer Compounds","publication_year":2024,"publication_date":"2024-08-28","ids":{"openalex":"https://openalex.org/W4401937236","doi":"https://doi.org/10.1021/acs.jcim.4c00643","pmid":"https://pubmed.ncbi.nlm.nih.gov/39197175"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1021/acs.jcim.4c00643","pdf_url":null,"source":{"id":"https://openalex.org/S167262187","display_name":"Journal of Chemical Information and Modeling","issn_l":"1549-9596","issn":["1549-9596","1549-960X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320006","host_organization_name":"American Chemical Society","host_organization_lineage":["https://openalex.org/P4310320006"],"host_organization_lineage_names":["American Chemical Society"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5078787020","display_name":"Thanh\u2010Hoang Nguyen\u2010Vo","orcid":"https://orcid.org/0000-0003-0006-5245"},"institutions":[{"id":"https://openalex.org/I4210096063","display_name":"Ho Chi Minh City Open University","ror":"https://ror.org/00tean533","country_code":"VN","type":"education","lineage":["https://openalex.org/I4210096063"]}],"countries":["VN"],"is_corresponding":false,"raw_author_name":"Thanh-Hoang Nguyen-Vo","raw_affiliation_strings":["Ho Chi Minh City Open University, 97 Vo Van Tan, District 3, Ho Chi Minh City 70000, Vietnam"],"affiliations":[{"raw_affiliation_string":"Ho Chi Minh City Open University, 97 Vo Van Tan, District 3, Ho Chi Minh City 70000, Vietnam","institution_ids":["https://openalex.org/I4210096063"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048585011","display_name":"T. T. Trang","orcid":"https://orcid.org/0000-0002-1614-4661"},"institutions":[{"id":"https://openalex.org/I4210096063","display_name":"Ho Chi Minh City Open University","ror":"https://ror.org/00tean533","country_code":"VN","type":"education","lineage":["https://openalex.org/I4210096063"]}],"countries":["VN"],"is_corresponding":true,"raw_author_name":"Trang T. T. Do","raw_affiliation_strings":["Ho Chi Minh City Open University, 97 Vo Van Tan, District 3, Ho Chi Minh City 70000, Vietnam"],"affiliations":[{"raw_affiliation_string":"Ho Chi Minh City Open University, 97 Vo Van Tan, District 3, Ho Chi Minh City 70000, Vietnam","institution_ids":["https://openalex.org/I4210096063"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5091142923","display_name":"Binh P. Nguyen","orcid":"https://orcid.org/0000-0001-6203-6664"},"institutions":[{"id":"https://openalex.org/I41156924","display_name":"Victoria University of Wellington","ror":"https://ror.org/0040r6f76","country_code":"NZ","type":"funder","lineage":["https://openalex.org/I41156924"]}],"countries":["NZ"],"is_corresponding":true,"raw_author_name":"Binh P. Nguyen","raw_affiliation_strings":["Victoria University of Wellington, Kelburn Parade, Wellington 6012, New Zealand"],"affiliations":[{"raw_affiliation_string":"Victoria University of Wellington, Kelburn Parade, Wellington 6012, New Zealand","institution_ids":["https://openalex.org/I41156924"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5048585011","https://openalex.org/A5091142923"],"corresponding_institution_ids":["https://openalex.org/I4210096063","https://openalex.org/I41156924"],"apc_list":null,"apc_paid":null,"fwci":2.781,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.999899,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":91,"max":94},"biblio":{"volume":"64","issue":"18","first_page":"6957","last_page":"6968"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10887","display_name":"Bioinformatics and Genomic Networks","score":0.9892,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9822,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7733147},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6322855},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5293746},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.49850345},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.49849796},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.48951304},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.431241},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.4104251},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.16871807},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D000970","descriptor_name":"Antineoplastic Agents","qualifier_ui":"Q000737","qualifier_name":"chemistry","is_major_topic":false},{"descriptor_ui":"D004353","descriptor_name":"Drug Evaluation, Preclinical","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D004354","descriptor_name":"Drug Screening Assays, Antitumor","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D000069550","descriptor_name":"Machine Learning","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D009369","descriptor_name":"Neoplasms","qualifier_ui":"Q000188","qualifier_name":"drug therapy","is_major_topic":false},{"descriptor_ui":"D016571","descriptor_name":"Neural Networks, Computer","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1021/acs.jcim.4c00643","pdf_url":null,"source":{"id":"https://openalex.org/S167262187","display_name":"Journal of Chemical Information and Modeling","issn_l":"1549-9596","issn":["1549-9596","1549-960X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320006","host_organization_name":"American Chemical Society","host_organization_lineage":["https://openalex.org/P4310320006"],"host_organization_lineage_names":["American Chemical Society"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/39197175","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/2","display_name":"Zero hunger","score":0.5}],"grants":[{"funder":"https://openalex.org/F4320320802","funder_display_name":"Victoria University of Wellington","award_id":"410132"},{"funder":"https://openalex.org/F4320320802","funder_display_name":"Victoria University of Wellington","award_id":"411494"},{"funder":"https://openalex.org/F4320321983","funder_display_name":"Ministry of Business, Innovation and Employment","award_id":"RTVU2301"}],"datasets":[],"versions":[],"referenced_works_count":54,"referenced_works":["https://openalex.org/W1480815559","https://openalex.org/W1534849470","https://openalex.org/W1757407923","https://openalex.org/W1967032556","https://openalex.org/W2042110087","https://openalex.org/W2050845614","https://openalex.org/W2055410245","https://openalex.org/W2057069496","https://openalex.org/W2066504626","https://openalex.org/W2071658986","https://openalex.org/W2087312216","https://openalex.org/W2104244948","https://openalex.org/W2104709519","https://openalex.org/W2139156287","https://openalex.org/W2194775991","https://openalex.org/W2247717637","https://openalex.org/W2265551258","https://openalex.org/W2302255633","https://openalex.org/W2347032600","https://openalex.org/W2362265365","https://openalex.org/W2482812992","https://openalex.org/W2536259549","https://openalex.org/W2614198047","https://openalex.org/W2762514363","https://openalex.org/W2771668374","https://openalex.org/W2791066888","https://openalex.org/W2802220919","https://openalex.org/W2807319911","https://openalex.org/W2886226482","https://openalex.org/W2889646458","https://openalex.org/W2906092989","https://openalex.org/W2947946031","https://openalex.org/W2960677646","https://openalex.org/W2964015378","https://openalex.org/W2964121744","https://openalex.org/W2997894756","https://openalex.org/W3095617312","https://openalex.org/W3128646645","https://openalex.org/W3132845217","https://openalex.org/W3166913861","https://openalex.org/W3200762293","https://openalex.org/W3205647825","https://openalex.org/W4212847239","https://openalex.org/W4226157755","https://openalex.org/W4306361925","https://openalex.org/W4311772362","https://openalex.org/W4319998010","https://openalex.org/W4323660087","https://openalex.org/W4379987356","https://openalex.org/W4382399592","https://openalex.org/W4384818885","https://openalex.org/W4387966606","https://openalex.org/W4392470807","https://openalex.org/W65738273"],"related_works":["https://openalex.org/W4399254932","https://openalex.org/W4380075502","https://openalex.org/W4312417841","https://openalex.org/W4226493464","https://openalex.org/W3193565141","https://openalex.org/W3167935049","https://openalex.org/W3133861977","https://openalex.org/W3103566983","https://openalex.org/W3029198973","https://openalex.org/W2951211570"],"abstract_inverted_index":{"Recently,":[0],"various":[1],"modern":[2],"experimental":[3,35],"screening":[4,209],"pipelines":[5],"and":[6,21,106,125,149,154],"assays":[7],"have":[8,45],"been":[9,46],"developed":[10],"to":[11,24,72,115,203],"find":[12],"promising":[13],"anticancer":[14,32,75,211],"drug":[15],"candidates.":[16],"However,":[17],"it":[18],"is":[19],"time-consuming":[20],"almost":[22],"infeasible":[23],"screen":[25],"an":[26,161],"immense":[27],"number":[28],"of":[29,69,102,109,179],"compounds":[30,129],"for":[31,151,174],"activity":[33],"via":[34],"approaches.":[36],"To":[37],"partially":[38],"address":[39],"this":[40,49],"issue,":[41],"several":[42],"computational":[43,172],"advances":[44],"proposed.":[47],"In":[48,77],"study,":[50],"we":[51,123],"present":[52],"iACP-GCR,":[53],"a":[54,199],"model":[55,152,157,197],"based":[56],"on":[57,60,160],"multitask":[58,175],"learning":[59],"graph":[61,81],"convolutional":[62,82],"residual":[63,83],"neural":[64,84],"networks":[65,85,187],"with":[66],"two":[67,180],"types":[68,134,183],"shortcut":[70,181],"connections,":[71],"identify":[73],"multitarget":[74],"compounds.":[76,212],"our":[78,117],"architecture,":[79],"the":[80,90,103,169,185,190,196,205],"are":[86],"shared":[87,186],"by":[88],"all":[89],"prediction":[91,191],"tasks":[92],"before":[93],"being":[94],"separately":[95],"customized.":[96],"The":[97,156,177],"NCI-60":[98],"data":[99,121,127],"set,":[100,122],"one":[101],"most":[104],"reliable":[105],"well-known":[107],"sources":[108],"experimentally":[110],"verified":[111],"compounds,":[112],"was":[113],"used":[114],"develop":[116],"model.":[118],"From":[119],"that":[120,166],"collected":[124],"refined":[126],"about":[128],"screened":[130],"across":[131],"nine":[132],"cancer":[133],"(panels),":[135],"including":[136],"breast,":[137],"central":[138],"nervous":[139],"system,":[140],"colon,":[141],"leukemia,":[142],"nonsmall":[143],"cell":[144],"lung,":[145],"melanoma,":[146],"ovarian,":[147],"prostate,":[148],"renal,":[150],"training":[153],"evaluation.":[155],"performance":[158],"evaluated":[159],"independent":[162],"test":[163],"set":[164],"shows":[165],"iACP-GCR":[167],"surpasses":[168],"three":[170],"advanced":[171],"methods":[173],"learning.":[176],"integration":[178],"connection":[182],"in":[184,208],"also":[188,194],"improves":[189],"efficiency.":[192],"We":[193],"deployed":[195],"as":[198],"public":[200],"web":[201],"server":[202],"assist":[204],"research":[206],"community":[207],"potential":[210]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4401937236","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-02-24T11:29:35.541902","created_date":"2024-08-29"}