{"id":"https://openalex.org/W3082411326","doi":"https://doi.org/10.1021/acs.jcim.0c00411","title":"Three-Dimensional Convolutional Neural Networks and a Cross-Docked Data Set for Structure-Based Drug Design","display_name":"Three-Dimensional Convolutional Neural Networks and a Cross-Docked Data Set for Structure-Based Drug Design","publication_year":2020,"publication_date":"2020-08-31","ids":{"openalex":"https://openalex.org/W3082411326","doi":"https://doi.org/10.1021/acs.jcim.0c00411","mag":"3082411326","pmid":"https://pubmed.ncbi.nlm.nih.gov/32865404"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1021/acs.jcim.0c00411","pdf_url":null,"source":{"id":"https://openalex.org/S167262187","display_name":"Journal of Chemical Information and Modeling","issn_l":"1549-9596","issn":["1549-9596","1549-960X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320006","host_organization_name":"American Chemical Society","host_organization_lineage":["https://openalex.org/P4310320006"],"host_organization_lineage_names":["American Chemical Society"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902699","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5069398964","display_name":"Paul Francoeur","orcid":"https://orcid.org/0000-0002-1440-567X"},"institutions":[{"id":"https://openalex.org/I170201317","display_name":"University of Pittsburgh","ror":"https://ror.org/01an3r305","country_code":"US","type":"funder","lineage":["https://openalex.org/I170201317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Paul G. Francoeur","raw_affiliation_strings":["Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States"],"affiliations":[{"raw_affiliation_string":"Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States","institution_ids":["https://openalex.org/I170201317"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109282775","display_name":"Tomohide Masuda","orcid":null},"institutions":[{"id":"https://openalex.org/I170201317","display_name":"University of Pittsburgh","ror":"https://ror.org/01an3r305","country_code":"US","type":"funder","lineage":["https://openalex.org/I170201317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tomohide Masuda","raw_affiliation_strings":["Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States"],"affiliations":[{"raw_affiliation_string":"Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States","institution_ids":["https://openalex.org/I170201317"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091914674","display_name":"Jocelyn Sunseri","orcid":"https://orcid.org/0000-0002-9043-6267"},"institutions":[{"id":"https://openalex.org/I170201317","display_name":"University of Pittsburgh","ror":"https://ror.org/01an3r305","country_code":"US","type":"funder","lineage":["https://openalex.org/I170201317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jocelyn Sunseri","raw_affiliation_strings":["Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States"],"affiliations":[{"raw_affiliation_string":"Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States","institution_ids":["https://openalex.org/I170201317"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081361744","display_name":"Andrew Jia","orcid":null},"institutions":[{"id":"https://openalex.org/I170201317","display_name":"University of Pittsburgh","ror":"https://ror.org/01an3r305","country_code":"US","type":"funder","lineage":["https://openalex.org/I170201317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Andrew Jia","raw_affiliation_strings":["Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States"],"affiliations":[{"raw_affiliation_string":"Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States","institution_ids":["https://openalex.org/I170201317"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5036399881","display_name":"Richard B. Iovanisci","orcid":null},"institutions":[{"id":"https://openalex.org/I170201317","display_name":"University of Pittsburgh","ror":"https://ror.org/01an3r305","country_code":"US","type":"funder","lineage":["https://openalex.org/I170201317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Richard B. Iovanisci","raw_affiliation_strings":["Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States"],"affiliations":[{"raw_affiliation_string":"Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States","institution_ids":["https://openalex.org/I170201317"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5107904285","display_name":"I. M. Snyder","orcid":null},"institutions":[{"id":"https://openalex.org/I170201317","display_name":"University of Pittsburgh","ror":"https://ror.org/01an3r305","country_code":"US","type":"funder","lineage":["https://openalex.org/I170201317"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ian Snyder","raw_affiliation_strings":["Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States"],"affiliations":[{"raw_affiliation_string":"Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States","institution_ids":["https://openalex.org/I170201317"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5040700924","display_name":"David Ryan Koes","orcid":"https://orcid.org/0000-0002-6892-6614"},"institutions":[{"id":"https://openalex.org/I170201317","display_name":"University of Pittsburgh","ror":"https://ror.org/01an3r305","country_code":"US","type":"funder","lineage":["https://openalex.org/I170201317"]}],"countries":["US"],"is_corresponding":true,"raw_author_name":"David R. Koes","raw_affiliation_strings":["Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States"],"affiliations":[{"raw_affiliation_string":"Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States","institution_ids":["https://openalex.org/I170201317"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5040700924"],"corresponding_institution_ids":["https://openalex.org/I170201317"],"apc_list":null,"apc_paid":null,"fwci":12.872,"has_fulltext":false,"cited_by_count":208,"citation_normalized_percentile":{"value":0.999895,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"60","issue":"9","first_page":"4200","last_page":"4215"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9914,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10044","display_name":"Protein Structure and Dynamics","score":0.9851,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.590014},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.51267874},{"id":"https://openalex.org/keywords/protein-data-bank","display_name":"Protein Data Bank","score":0.41249204}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7252176},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.7002072},{"id":"https://openalex.org/C169903167","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Test set","level":2,"score":0.6862717},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.6432829},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.590014},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5755659},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.56850284},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5426157},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.51267874},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.47770858},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.44009605},{"id":"https://openalex.org/C119145174","wikidata":"https://www.wikidata.org/wiki/Q7251429","display_name":"Protein Data Bank","level":3,"score":0.41249204},{"id":"https://openalex.org/C47701112","wikidata":"https://www.wikidata.org/wiki/Q735188","display_name":"Protein structure","level":2,"score":0.22162828},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.12156677},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.06410754},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D030562","descriptor_name":"Databases, Protein","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D015195","descriptor_name":"Drug Design","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D008024","descriptor_name":"Ligands","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016571","descriptor_name":"Neural Networks, Computer","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D011485","descriptor_name":"Protein Binding","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":5,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1021/acs.jcim.0c00411","pdf_url":null,"source":{"id":"https://openalex.org/S167262187","display_name":"Journal of Chemical Information and Modeling","issn_l":"1549-9596","issn":["1549-9596","1549-960X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320006","host_organization_name":"American Chemical Society","host_organization_lineage":["https://openalex.org/P4310320006"],"host_organization_lineage_names":["American Chemical Society"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902699","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"acceptedVersion","is_accepted":true,"is_published":false},{"is_oa":true,"landing_page_url":"https://doi.org/10.26434/chemrxiv.11833323.v1","pdf_url":null,"source":null,"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://doi.org/10.26434/chemrxiv.11833323","pdf_url":"https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/60c748ce702a9b55ae18b058/original/3d-convolutional-neural-networks-and-a-cross-docked-dataset-for-structure-based-drug-design.pdf","source":null,"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/32865404","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902699","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"acceptedVersion","is_accepted":true,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320337354","funder_display_name":"National Institute of General Medical Sciences","award_id":"R01GM108340"}],"datasets":[],"versions":[],"referenced_works_count":60,"referenced_works":["https://openalex.org/W1527782499","https://openalex.org/W1968319881","https://openalex.org/W1969017960","https://openalex.org/W1973974137","https://openalex.org/W1985588649","https://openalex.org/W1986240377","https://openalex.org/W1988375149","https://openalex.org/W1992441011","https://openalex.org/W1993285168","https://openalex.org/W2003356525","https://openalex.org/W2004386051","https://openalex.org/W2022879191","https://openalex.org/W2027408247","https://openalex.org/W2028609644","https://openalex.org/W2028629022","https://openalex.org/W2034553680","https://openalex.org/W2060320699","https://openalex.org/W2072180710","https://openalex.org/W2103388612","https://openalex.org/W2112213938","https://openalex.org/W2122199548","https://openalex.org/W2128332459","https://openalex.org/W2134967712","https://openalex.org/W2138770756","https://openalex.org/W2139362074","https://openalex.org/W2148512505","https://openalex.org/W2318311899","https://openalex.org/W2512901842","https://openalex.org/W2521525223","https://openalex.org/W2550887636","https://openalex.org/W2583907533","https://openalex.org/W2587598315","https://openalex.org/W2594726310","https://openalex.org/W2774371249","https://openalex.org/W2776414161","https://openalex.org/W2781821160","https://openalex.org/W2784177911","https://openalex.org/W2784213390","https://openalex.org/W2785947426","https://openalex.org/W2889677957","https://openalex.org/W2894566366","https://openalex.org/W2912564562","https://openalex.org/W2918239264","https://openalex.org/W2955986556","https://openalex.org/W2963833291","https://openalex.org/W2969325194","https://openalex.org/W2969996838","https://openalex.org/W2980234582","https://openalex.org/W2982388225","https://openalex.org/W2985816842","https://openalex.org/W3005417975","https://openalex.org/W3006477052","https://openalex.org/W3015572666","https://openalex.org/W3104508774","https://openalex.org/W3104705366","https://openalex.org/W3106162654","https://openalex.org/W4212774754","https://openalex.org/W4233372852","https://openalex.org/W4236965008","https://openalex.org/W4250830547"],"related_works":["https://openalex.org/W4225124612","https://openalex.org/W2991483587","https://openalex.org/W2971899271","https://openalex.org/W2786391746","https://openalex.org/W2043806667","https://openalex.org/W2033669961","https://openalex.org/W2021633306","https://openalex.org/W2006801911","https://openalex.org/W1999699871","https://openalex.org/W1990237101"],"abstract_inverted_index":{"One":[0],"of":[1,27,48,73,91,108,119,149,158,169],"the":[2,66,82,106,109,117,123,146],"main":[3],"challenges":[4],"in":[5,33],"drug":[6],"discovery":[7],"is":[8],"predicting":[9],"protein-ligand":[10],"binding":[11,79],"affinity.":[12],"Recently,":[13],"machine":[14,64],"learning":[15],"approaches":[16],"have":[17],"made":[18],"substantial":[19],"progress":[20],"on":[21,98],"this":[22,99],"task.":[23],"However,":[24],"current":[25],"methods":[26],"model":[28],"evaluation":[29,90],"are":[30],"overly":[31],"optimistic":[32],"measuring":[34],"generalization":[35],"to":[36,51,145],"new":[37,59],"targets,":[38],"and":[39,86,112,136,171],"there":[40],"does":[41],"not":[42],"exist":[43],"a":[44,58,88,150,164],"standard":[45],"data":[46,60,100,111,114,125],"set":[47,61],"sufficient":[49],"size":[50],"compare":[52],"performance":[53,128],"between":[54],"models.":[55],"We":[56,102],"present":[57],"for":[62],"structure-based":[63],"learning,":[65],"CrossDocked2020":[67],"set,":[68,126],"with":[69,122,139],"22.5":[70],"million":[71],"poses":[72,141],"ligands":[74],"docked":[75,140],"into":[76],"multiple":[77],"similar":[78],"pockets":[80],"across":[81],"Protein":[83],"Data":[84],"Bank,":[85],"perform":[87],"comprehensive":[89],"grid-based":[92],"convolutional":[93],"neural":[94],"network":[95],"(CNN)":[96],"models":[97,120],"set.":[101],"also":[103],"demonstrate":[104],"how":[105,127,137],"partitioning":[107],"training":[110,134,138],"test":[113],"can":[115],"impact":[116],"results":[118],"trained":[121],"PDBbind":[124],"improves":[129],"by":[130],"adding":[131],"more":[132],"lower-quality":[133],"data,":[135],"imparts":[142],"pose":[143],"sensitivity":[144],"predicted":[147],"affinity":[148],"complex.":[151],"Our":[152],"best":[153],"performing":[154],"model,":[155],"an":[156],"ensemble":[157],"five":[159],"densely":[160],"connected":[161],"CNNs,":[162],"achieves":[163],"root":[165],"mean":[166],"squared":[167],"error":[168],"1.42":[170],"Pearson":[172]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3082411326","counts_by_year":[{"year":2025,"cited_by_count":15},{"year":2024,"cited_by_count":76},{"year":2023,"cited_by_count":53},{"year":2022,"cited_by_count":32},{"year":2021,"cited_by_count":24},{"year":2020,"cited_by_count":4}],"updated_date":"2025-04-26T01:15:35.275813","created_date":"2020-09-08"}