{"id":"https://openalex.org/W4387501242","doi":"https://doi.org/10.1017/s0263574723001327","title":"Hybrid deep learning model-based human action recognition in indoor environment","display_name":"Hybrid deep learning model-based human action recognition in indoor environment","publication_year":2023,"publication_date":"2023-10-10","ids":{"openalex":"https://openalex.org/W4387501242","doi":"https://doi.org/10.1017/s0263574723001327"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1017/s0263574723001327","pdf_url":null,"source":{"id":"https://openalex.org/S92163612","display_name":"Robotica","issn_l":"0263-5747","issn":["0263-5747","1469-8668"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310311721","host_organization_name":"Cambridge University Press","host_organization_lineage":["https://openalex.org/P4310311721","https://openalex.org/P4310311702"],"host_organization_lineage_names":["Cambridge University Press","University of Cambridge"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5071472303","display_name":"M.K. Sain","orcid":"https://orcid.org/0000-0003-0129-0874"},"institutions":[{"id":"https://openalex.org/I33552525","display_name":"LNM Institute of Information Technology","ror":"https://ror.org/03jp7rg16","country_code":"IN","type":"education","lineage":["https://openalex.org/I33552525"]}],"countries":["IN"],"is_corresponding":true,"raw_author_name":"Manoj Kumar Sain","raw_affiliation_strings":["Department of Electronics and Communication, The LNM Institute of Information Technology, Jaipur, India"],"affiliations":[{"raw_affiliation_string":"Department of Electronics and Communication, The LNM Institute of Information Technology, Jaipur, India","institution_ids":["https://openalex.org/I33552525"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000303933","display_name":"Rabul Hussain Laskar","orcid":"https://orcid.org/0000-0003-3988-394X"},"institutions":[{"id":"https://openalex.org/I151903974","display_name":"National Institute Of Technology Silchar","ror":"https://ror.org/001ws2a36","country_code":"IN","type":"education","lineage":["https://openalex.org/I151903974"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Rabul Hussain Laskar","raw_affiliation_strings":["Department of Electronics and Communication, National Institute of Technology, Silchar, Assam, India"],"affiliations":[{"raw_affiliation_string":"Department of Electronics and Communication, National Institute of Technology, Silchar, Assam, India","institution_ids":["https://openalex.org/I151903974"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024474143","display_name":"Joyeeta Singha","orcid":"https://orcid.org/0000-0001-9077-1842"},"institutions":[{"id":"https://openalex.org/I33552525","display_name":"LNM Institute of Information Technology","ror":"https://ror.org/03jp7rg16","country_code":"IN","type":"education","lineage":["https://openalex.org/I33552525"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Joyeeta Singha","raw_affiliation_strings":["Department of Electronics and Communication, The LNM Institute of Information Technology, Jaipur, India"],"affiliations":[{"raw_affiliation_string":"Department of Electronics and Communication, The LNM Institute of Information Technology, Jaipur, India","institution_ids":["https://openalex.org/I33552525"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5082214145","display_name":"Sandeep Saini","orcid":"https://orcid.org/0000-0002-8906-8639"},"institutions":[{"id":"https://openalex.org/I33552525","display_name":"LNM Institute of Information Technology","ror":"https://ror.org/03jp7rg16","country_code":"IN","type":"education","lineage":["https://openalex.org/I33552525"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Sandeep Saini","raw_affiliation_strings":["Department of Electronics and Communication, The LNM Institute of Information Technology, Jaipur, India"],"affiliations":[{"raw_affiliation_string":"Department of Electronics and Communication, The LNM Institute of Information Technology, Jaipur, India","institution_ids":["https://openalex.org/I33552525"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5071472303"],"corresponding_institution_ids":["https://openalex.org/I33552525"],"apc_list":null,"apc_paid":null,"fwci":1.096,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.556134,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":90},"biblio":{"volume":"41","issue":"12","first_page":"3788","last_page":"3817"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9864,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/handshake","display_name":"Handshake","score":0.5347679},{"id":"https://openalex.org/keywords/activity-recognition","display_name":"Activity Recognition","score":0.52941734}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79753375},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7752696},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.7409426},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.69412106},{"id":"https://openalex.org/C2778000800","wikidata":"https://www.wikidata.org/wiki/Q830043","display_name":"Handshake","level":3,"score":0.5347679},{"id":"https://openalex.org/C121687571","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Activity recognition","level":2,"score":0.52941734},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5081754},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.41054395},{"id":"https://openalex.org/C2779960059","wikidata":"https://www.wikidata.org/wiki/Q7113681","display_name":"Overhead (engineering)","level":2,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1017/s0263574723001327","pdf_url":null,"source":{"id":"https://openalex.org/S92163612","display_name":"Robotica","issn_l":"0263-5747","issn":["0263-5747","1469-8668"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310311721","host_organization_name":"Cambridge University Press","host_organization_lineage":["https://openalex.org/P4310311721","https://openalex.org/P4310311702"],"host_organization_lineage_names":["Cambridge University Press","University of Cambridge"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":35,"referenced_works":["https://openalex.org/W2140944144","https://openalex.org/W2264719059","https://openalex.org/W2736191430","https://openalex.org/W2736334449","https://openalex.org/W2774824934","https://openalex.org/W2802169192","https://openalex.org/W2901364425","https://openalex.org/W2901713071","https://openalex.org/W2936610935","https://openalex.org/W2941398656","https://openalex.org/W2963993350","https://openalex.org/W2964134613","https://openalex.org/W2964590182","https://openalex.org/W3011468749","https://openalex.org/W3011785450","https://openalex.org/W3011864379","https://openalex.org/W3082374602","https://openalex.org/W3133590696","https://openalex.org/W3135100418","https://openalex.org/W3143148078","https://openalex.org/W3172093704","https://openalex.org/W3177525997","https://openalex.org/W3193585534","https://openalex.org/W3202535612","https://openalex.org/W3204347661","https://openalex.org/W3210766530","https://openalex.org/W4205234192","https://openalex.org/W4205255130","https://openalex.org/W4206103951","https://openalex.org/W4206780588","https://openalex.org/W4220894661","https://openalex.org/W4281737392","https://openalex.org/W4285079306","https://openalex.org/W4311004828","https://openalex.org/W4367844760"],"related_works":["https://openalex.org/W4380075502","https://openalex.org/W4312417841","https://openalex.org/W4285173741","https://openalex.org/W4226493464","https://openalex.org/W3193565141","https://openalex.org/W3167935049","https://openalex.org/W3133861977","https://openalex.org/W3029198973","https://openalex.org/W2470505501","https://openalex.org/W2358991869"],"abstract_inverted_index":{"Abstract":[0],"Human":[1],"activity":[2,38,144],"recognition":[3],"(HAR)":[4],"is":[5,206,218],"an":[6],"emerging":[7],"challenge":[8],"among":[9],"researchers.":[10],"HAR":[11],"has":[12],"many":[13],"possible":[14],"uses":[15],"in":[16,39],"various":[17],"fields,":[18],"including":[19],"healthcare,":[20],"sports,":[21],"and":[22,35,42,50,63,79,93,116,138,158,162,178,191,200],"security.":[23],"Furthermore,":[24],"there":[25],"are":[26,169],"only":[27],"a":[28,124,132,134,139],"few":[29],"publicly":[30],"accessible":[31,219],"datasets":[32,44],"for":[33,143],"classifying":[34],"recognizing":[36],"physical":[37],"the":[40,89,154,167,172,221],"literature,":[41],"these":[43],"comprise":[45],"fewer":[46],"activities.":[47],"We":[48],"created":[49],"compared":[51],"our":[52],"dataset":[53,68,216],"with":[54,171],"available":[55],"datasets,":[56],"that":[57,187],"is,":[58],"NTU-RGBD,":[59],"UP-FALL,":[60],"UR-Fall,":[61],"WISDM,":[62],"UCI":[64],"HAR.":[65],"The":[66,81,146,180,214],"proposed":[67,181,204,215],"consists":[69],"of":[70,91,174,184,188,197,208],"seven":[71],"activities:":[72],"eating,":[73],"exercise,":[74],"handshake,":[75],"situps,":[76],"vomiting,":[77],"headache,":[78],"walking.":[80],"activities":[82],"were":[83],"collected":[84],"from":[85,166],"20":[86],"people":[87],"between":[88],"ages":[90],"25":[92],"40":[94],"years":[95],"using":[96,153],"Kinect":[97],"V2":[98],"sensor":[99],"at":[100],"30":[101],"FPS.":[102],"For":[103],"classification,":[104],"we":[105,122],"use":[106],"deep":[107,127],"learning":[108,128],"architectures":[109],"based":[110],"on":[111],"convolutional":[112],"neural":[113],"network":[114],"(CNN)":[115],"long":[117],"short-term":[118],"memory":[119],"(LSTM).":[120],"Additionally,":[121],"developed":[123],"novel":[125],"hybrid":[126],"model":[129,148],"by":[130],"combining":[131],"CNN,":[133,189],"bidirectional":[135],"LSTM":[136],"unit,":[137],"fully":[140],"connected":[141],"layer":[142],"identification.":[145],"suggested":[147],"builds":[149],"unique":[150],"guided":[151],"features":[152],"preprocessed":[155],"skeleton":[156],"coordinates":[157],"their":[159],"distinctive":[160],"geometrical":[161],"kinematic":[163],"aspects.":[164],"Results":[165],"experiment":[168],"contrasted":[170],"performance":[173],"stand-alone":[175],"CNNs,":[176],"LSTMs,":[177],"ConvLSTM.":[179],"model\u2019s":[182],"accuracy":[183,195],"99.5%":[185],"surpasses":[186],"LSTM,":[190],"ConvLSTM,":[192],"which":[193],"have":[194],"rates":[196],"95.76%,":[198],"97%,":[199],"98.89%,":[201],"respectively.":[202],"Our":[203],"technique":[205],"invariant":[207],"stance,":[209],"speed,":[210],"individual,":[211],"clothes,":[212],"etc.":[213],"sample":[217],"to":[220],"general":[222],"public.":[223]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387501242","counts_by_year":[{"year":2024,"cited_by_count":3}],"updated_date":"2024-12-18T19:16:42.232744","created_date":"2023-10-11"}