{"id":"https://openalex.org/W4388996759","doi":"https://doi.org/10.1016/j.procs.2023.10.530","title":"Traffic incident prediction and classification system using na\u00efve bayes algorithm","display_name":"Traffic incident prediction and classification system using na\u00efve bayes algorithm","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4388996759","doi":"https://doi.org/10.1016/j.procs.2023.10.530"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.procs.2023.10.530","pdf_url":null,"source":{"id":"https://openalex.org/S120348307","display_name":"Procedia Computer Science","issn_l":"1877-0509","issn":["1877-0509"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://doi.org/10.1016/j.procs.2023.10.530","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5093336407","display_name":"Michael Libnao","orcid":null},"institutions":[{"id":"https://openalex.org/I2800060660","display_name":"Polytechnic University of the Philippines","ror":"https://ror.org/00e7vmq69","country_code":"PH","type":"education","lineage":["https://openalex.org/I2800060660"]}],"countries":["PH"],"is_corresponding":false,"raw_author_name":"Michael Libnao","raw_affiliation_strings":["Polytechnic University of the Philippine, Sta. Mesa Manila, Philippines"],"affiliations":[{"raw_affiliation_string":"Polytechnic University of the Philippine, Sta. Mesa Manila, Philippines","institution_ids":["https://openalex.org/I2800060660"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5093336408","display_name":"Marwin Misula","orcid":null},"institutions":[{"id":"https://openalex.org/I2800060660","display_name":"Polytechnic University of the Philippines","ror":"https://ror.org/00e7vmq69","country_code":"PH","type":"education","lineage":["https://openalex.org/I2800060660"]}],"countries":["PH"],"is_corresponding":false,"raw_author_name":"Marwin Misula","raw_affiliation_strings":["Polytechnic University of the Philippine, Sta. Mesa Manila, Philippines"],"affiliations":[{"raw_affiliation_string":"Polytechnic University of the Philippine, Sta. Mesa Manila, Philippines","institution_ids":["https://openalex.org/I2800060660"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109565063","display_name":"Christopher Andres","orcid":null},"institutions":[{"id":"https://openalex.org/I2800060660","display_name":"Polytechnic University of the Philippines","ror":"https://ror.org/00e7vmq69","country_code":"PH","type":"education","lineage":["https://openalex.org/I2800060660"]}],"countries":["PH"],"is_corresponding":false,"raw_author_name":"Christopher Andres","raw_affiliation_strings":["Polytechnic University of the Philippine, Sta. Mesa Manila, Philippines"],"affiliations":[{"raw_affiliation_string":"Polytechnic University of the Philippine, Sta. Mesa Manila, Philippines","institution_ids":["https://openalex.org/I2800060660"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5093336409","display_name":"Jester Mari\u00f1as","orcid":null},"institutions":[{"id":"https://openalex.org/I2800060660","display_name":"Polytechnic University of the Philippines","ror":"https://ror.org/00e7vmq69","country_code":"PH","type":"education","lineage":["https://openalex.org/I2800060660"]}],"countries":["PH"],"is_corresponding":false,"raw_author_name":"Jester Mari\u00f1as","raw_affiliation_strings":["Polytechnic University of the Philippine, Sta. Mesa Manila, Philippines"],"affiliations":[{"raw_affiliation_string":"Polytechnic University of the Philippine, Sta. Mesa Manila, Philippines","institution_ids":["https://openalex.org/I2800060660"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5073129880","display_name":"Aleta C. Fabregas","orcid":null},"institutions":[{"id":"https://openalex.org/I2800060660","display_name":"Polytechnic University of the Philippines","ror":"https://ror.org/00e7vmq69","country_code":"PH","type":"education","lineage":["https://openalex.org/I2800060660"]}],"countries":["PH"],"is_corresponding":true,"raw_author_name":"Aleta Fabregas","raw_affiliation_strings":["Polytechnic University of the Philippine, Sta. Mesa Manila, Philippines"],"affiliations":[{"raw_affiliation_string":"Polytechnic University of the Philippine, Sta. Mesa Manila, Philippines","institution_ids":["https://openalex.org/I2800060660"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5073129880"],"corresponding_institution_ids":["https://openalex.org/I2800060660"],"apc_list":null,"apc_paid":null,"fwci":0.643,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.57521,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":78,"max":84},"biblio":{"volume":"227","issue":null,"first_page":"316","last_page":"325"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10524","display_name":"Traffic control and management","score":0.9843,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9781,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/incident-management","display_name":"Incident management","score":0.64356405}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8322236},{"id":"https://openalex.org/C207201462","wikidata":"https://www.wikidata.org/wiki/Q182505","display_name":"Bayes' theorem","level":3,"score":0.6719141},{"id":"https://openalex.org/C2780952636","wikidata":"https://www.wikidata.org/wiki/Q13479512","display_name":"Incident management","level":2,"score":0.64356405},{"id":"https://openalex.org/C52001869","wikidata":"https://www.wikidata.org/wiki/Q812530","display_name":"Naive Bayes classifier","level":3,"score":0.60447574},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.52826536},{"id":"https://openalex.org/C207512268","wikidata":"https://www.wikidata.org/wiki/Q3074551","display_name":"Traffic flow (computer networking)","level":2,"score":0.5190183},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5185931},{"id":"https://openalex.org/C2779888511","wikidata":"https://www.wikidata.org/wiki/Q244156","display_name":"Traffic congestion","level":2,"score":0.46120352},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.45299506},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3560635},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.27410024},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.22653109},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.16693056},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.12547678},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.12501884},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.procs.2023.10.530","pdf_url":null,"source":{"id":"https://openalex.org/S120348307","display_name":"Procedia Computer Science","issn_l":"1877-0509","issn":["1877-0509"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.procs.2023.10.530","pdf_url":null,"source":{"id":"https://openalex.org/S120348307","display_name":"Procedia Computer Science","issn_l":"1877-0509","issn":["1877-0509"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":7,"referenced_works":["https://openalex.org/W1883111670","https://openalex.org/W1968010607","https://openalex.org/W2017258322","https://openalex.org/W2045510847","https://openalex.org/W2612952973","https://openalex.org/W2621409665","https://openalex.org/W4361275309"],"related_works":["https://openalex.org/W647118044","https://openalex.org/W4390987329","https://openalex.org/W2947512740","https://openalex.org/W2792033343","https://openalex.org/W2537862391","https://openalex.org/W2417174640","https://openalex.org/W2361581724","https://openalex.org/W1861649748","https://openalex.org/W1502048341","https://openalex.org/W1176991243"],"abstract_inverted_index":{"The":[0,33,74,93,114,139],"research":[1],"paper":[2],"proposes":[3],"a":[4],"Traffic":[5,45],"Incident":[6],"Prediction":[7],"and":[8,19,30,42,44,54,88,101,123,133,150,158],"Classification":[9],"System":[10],"using":[11,52],"Na\u00efve":[12,115],"Bayes":[13,116],"Algorithm":[14,117],"(TIPCS)":[15],"to":[16,26,57,77,84,89,108,145],"proactively":[17],"predict":[18,132],"classify":[20,90,134],"traffic":[21,31,37,62,151],"incidents,":[22,63],"which":[23],"can":[24,130],"lead":[25],"improved":[27],"incident":[28,46,81,99,121,148],"management":[29,149],"flow.":[32],"system":[34,75,94],"utilizes":[35],"real-time":[36,55],"data,":[38],"including":[39],"location,":[40],"date":[41],"time,":[43],"prediction":[47,122],"is":[48,82,95,102,118],"the":[49,59,72,143],"task":[50],"of":[51,61],"historical":[53,98],"data":[56,100,107],"forecast":[58],"occurrence":[60],"such":[64],"as":[65],"accidents,":[66],"congestion,":[67],"or":[68,86],"road":[69,159],"closures,":[70],"in":[71],"future.":[73],"aims":[76],"determine":[78],"whether":[79],"an":[80],"likely":[83],"occur":[85],"not":[87],"it":[91],"accordingly.":[92],"trained":[96],"on":[97],"continuously":[103],"updated":[104],"with":[105],"new":[106],"improve":[109,147],"its":[110],"accuracy":[111],"over":[112],"time.":[113],"used":[119],"for":[120],"forecast,":[124],"by":[125],"utilizing":[126],"this":[127],"algorithm,":[128],"TIPCS":[129],"accurately":[131],"incidents":[135],"at":[136],"70.03%":[137],"accuracy.":[138],"proposed":[140],"study":[141],"has":[142],"potential":[144],"significantly":[146],"flow,":[152],"ultimately":[153],"benefiting":[154],"both":[155],"transportation":[156],"officials":[157],"users.":[160]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388996759","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-01-04T14:24:43.552828","created_date":"2023-11-26"}