{"id":"https://openalex.org/W4386336906","doi":"https://doi.org/10.1016/j.procs.2023.08.203","title":"Exploring the Impact of Synthetic Data on Human Activity Recognition Tasks","display_name":"Exploring the Impact of Synthetic Data on Human Activity Recognition Tasks","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4386336906","doi":"https://doi.org/10.1016/j.procs.2023.08.203"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.procs.2023.08.203","pdf_url":null,"source":{"id":"https://openalex.org/S120348307","display_name":"Procedia Computer Science","issn_l":"1877-0509","issn":["1877-0509"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://doi.org/10.1016/j.procs.2023.08.203","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5000458636","display_name":"Maynara Donato de Souza","orcid":"https://orcid.org/0009-0004-0438-3229"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Maynara Donato de Souza","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111033198","display_name":"Clesson Roberto Silva","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Clesson Roberto Silva Junior","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041696034","display_name":"Jonysberg P. Quintino","orcid":"https://orcid.org/0000-0003-4667-2243"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jonysberg Quintino","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102259831","display_name":"Andr\u00e9 Luis dos Santos","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Andr\u00e9 Luis Santos","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031528145","display_name":"F\u00e1bio Q. B. da Silva","orcid":"https://orcid.org/0000-0002-3734-040X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fabio Q B da Silva","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5086345001","display_name":"Cleber Zanchettin","orcid":"https://orcid.org/0000-0001-6421-9747"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cleber Zanchettin","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.64,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.481199,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":78,"max":84},"biblio":{"volume":"222","issue":null,"first_page":"656","last_page":"665"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9775,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/synthetic-data","display_name":"Synthetic data","score":0.7717012},{"id":"https://openalex.org/keywords/activity-recognition","display_name":"Activity Recognition","score":0.5080016},{"id":"https://openalex.org/keywords/labeled-data","display_name":"Labeled data","score":0.4484147},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.430947},{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.41400248}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.87790984},{"id":"https://openalex.org/C160920958","wikidata":"https://www.wikidata.org/wiki/Q7662746","display_name":"Synthetic data","level":2,"score":0.7717012},{"id":"https://openalex.org/C2776459999","wikidata":"https://www.wikidata.org/wiki/Q2119376","display_name":"Fidelity","level":2,"score":0.6092495},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.60295075},{"id":"https://openalex.org/C150594956","wikidata":"https://www.wikidata.org/wiki/Q1334829","display_name":"Wearable computer","level":2,"score":0.5802076},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5758736},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.5383175},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.52842814},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.5282758},{"id":"https://openalex.org/C121687571","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Activity recognition","level":2,"score":0.5080016},{"id":"https://openalex.org/C132964779","wikidata":"https://www.wikidata.org/wiki/Q2110223","display_name":"Raw data","level":2,"score":0.4736318},{"id":"https://openalex.org/C2776145971","wikidata":"https://www.wikidata.org/wiki/Q30673951","display_name":"Labeled data","level":2,"score":0.4484147},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.430947},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.41400248},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.procs.2023.08.203","pdf_url":null,"source":{"id":"https://openalex.org/S120348307","display_name":"Procedia Computer Science","issn_l":"1877-0509","issn":["1877-0509"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.procs.2023.08.203","pdf_url":null,"source":{"id":"https://openalex.org/S120348307","display_name":"Procedia Computer Science","issn_l":"1877-0509","issn":["1877-0509"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320319527","funder_display_name":"Samsung Eletr\u00f4nica da Amaz\u00f4nia","award_id":null},{"funder":"https://openalex.org/F4320321091","funder_display_name":"Coordena\u00e7\u00e3o de Aperfei\u00e7oamento de Pessoal de N\u00edvel Superior","award_id":"88887.136410/2017-00"},{"funder":"https://openalex.org/F4320321091","funder_display_name":"Coordena\u00e7\u00e3o de Aperfei\u00e7oamento de Pessoal de N\u00edvel Superior","award_id":"314523/2009-0"},{"funder":"https://openalex.org/F4320322025","funder_display_name":"Conselho Nacional de Desenvolvimento Cient\u00edfico e Tecnol\u00f3gico","award_id":"465614/2014-0"},{"funder":"https://openalex.org/F4320323678","funder_display_name":"Funda\u00e7\u00e3o de Amparo \u00e0 Ci\u00eancia e Tecnologia do Estado de Pernambuco","award_id":"APQ-0399-1.03/17"},{"funder":"https://openalex.org/F4320323678","funder_display_name":"Funda\u00e7\u00e3o de Amparo \u00e0 Ci\u00eancia e Tecnologia do Estado de Pernambuco","award_id":"APQ/0388-1.03/14"},{"funder":"https://openalex.org/F4320324265","funder_display_name":"Instituto Nacional de Ci\u00eancia e Tecnologia para Engenharia de Software","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W2521769738","https://openalex.org/W2900975567","https://openalex.org/W2970360512","https://openalex.org/W2996813151","https://openalex.org/W3021673939","https://openalex.org/W3043592300","https://openalex.org/W3096831136","https://openalex.org/W3129651364","https://openalex.org/W3134689613","https://openalex.org/W3181655313","https://openalex.org/W4205189160","https://openalex.org/W4213397551","https://openalex.org/W4214539449","https://openalex.org/W4255556797","https://openalex.org/W4281855644","https://openalex.org/W4289520498","https://openalex.org/W4290802752","https://openalex.org/W4292753694","https://openalex.org/W4299412574"],"related_works":["https://openalex.org/W4376988852","https://openalex.org/W4366999383","https://openalex.org/W4296960511","https://openalex.org/W4296551294","https://openalex.org/W4289277131","https://openalex.org/W3101955189","https://openalex.org/W2901908207","https://openalex.org/W2888018805","https://openalex.org/W2610740816","https://openalex.org/W2124823771"],"abstract_inverted_index":{"This":[0],"paper":[1],"investigates":[2],"the":[3,10,21,33,55,58,64,68,74,78,115,135],"potential":[4],"of":[5,12,35,60,70,80,94,117,137],"synthetic":[6,61,81,92,110,138],"data":[7,66,97,123,132,139],"in":[8,77],"enhancing":[9],"performance":[11,34,116],"Machine":[13,118],"Learning":[14,119],"classifiers.":[15],"Our":[16],"focus":[17],"lies":[18],"primarily":[19],"on":[20,73],"Human":[22],"Activity":[23],"Recognition":[24],"task,":[25],"Specifically":[26],"through":[27],"wearable":[28,99],"device":[29],"sensors.":[30],"We":[31,83],"analyze":[32],"three":[36],"Generative":[37],"Adversarial":[38],"Networks":[39],"(GANs)":[40],"and":[41,48,67],"a":[42,86],"Diffuse":[43],"model,":[44],"considering":[45],"fidelity,":[46],"diversity,":[47],"generalization":[49],"metrics.":[50],"In":[51],"addition,":[52],"we":[53],"assess":[54],"relationship":[56],"between":[57],"addition":[59],"samples":[62,93,111],"to":[63,90,141],"training":[65,142],"impact":[69],"imbalanced":[71],"classes":[72],"generative":[75],"model":[76],"production":[79],"samples.":[82,143],"also":[84],"introduce":[85],"novel":[87],"GAN":[88],"designed":[89],"generate":[91],"time":[95],"series":[96],"from":[98],"devices.":[100],"After":[101],"conducting":[102],"nearly":[103],"400":[104],"experiments,":[105],"our":[106,128],"results":[107],"suggest":[108],"that":[109,131],"can":[112],"significantly":[113],"improve":[114],"models":[120],"when":[121],"real":[122],"are":[124],"scarce.":[125],"More":[126],"importantly,":[127],"findings":[129],"underline":[130],"quality":[133],"precedes":[134],"quantity":[136],"added":[140]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386336906","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-01-22T17:57:04.390105","created_date":"2023-09-01"}