{"id":"https://openalex.org/W4315752438","doi":"https://doi.org/10.1016/j.procs.2022.12.278","title":"On Domain Randomization for Object Detection in real industrial scenarios using Synthetic Images","display_name":"On Domain Randomization for Object Detection in real industrial scenarios using Synthetic Images","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4315752438","doi":"https://doi.org/10.1016/j.procs.2022.12.278"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.procs.2022.12.278","pdf_url":null,"source":{"id":"https://openalex.org/S120348307","display_name":"Procedia Computer Science","issn_l":"1877-0509","issn":["1877-0509"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://doi.org/10.1016/j.procs.2022.12.278","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5047134253","display_name":"Davide Pasanisi","orcid":"https://orcid.org/0000-0001-6584-7307"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Davide Pasanisi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5051919962","display_name":"Emanuele Rota","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Emanuele Rota","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081207779","display_name":"Michele Ermidoro","orcid":"https://orcid.org/0000-0002-0975-6897"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Michele Ermidoro","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5018581372","display_name":"Luca Fasanotti","orcid":"https://orcid.org/0000-0001-7049-8818"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Luca Fasanotti","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.314,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.99995,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":85,"max":88},"biblio":{"volume":"217","issue":null,"first_page":"816","last_page":"825"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.999,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.999,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12923","display_name":"Digital Image Processing Techniques","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/synthetic-data","display_name":"Synthetic data","score":0.62760067}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.90718174},{"id":"https://openalex.org/C205711294","wikidata":"https://www.wikidata.org/wiki/Q176953","display_name":"Rendering (computer graphics)","level":2,"score":0.75101775},{"id":"https://openalex.org/C2776459999","wikidata":"https://www.wikidata.org/wiki/Q2119376","display_name":"Fidelity","level":2,"score":0.71076673},{"id":"https://openalex.org/C160920958","wikidata":"https://www.wikidata.org/wiki/Q7662746","display_name":"Synthetic data","level":2,"score":0.62760067},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5878421},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4921381},{"id":"https://openalex.org/C2780598303","wikidata":"https://www.wikidata.org/wiki/Q65921492","display_name":"Flexibility (engineering)","level":2,"score":0.47916785},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.47285938},{"id":"https://openalex.org/C2777904410","wikidata":"https://www.wikidata.org/wiki/Q7397","display_name":"Software","level":2,"score":0.4265208},{"id":"https://openalex.org/C36464697","wikidata":"https://www.wikidata.org/wiki/Q451553","display_name":"Visualization","level":2,"score":0.41026658},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.32605642},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.procs.2022.12.278","pdf_url":null,"source":{"id":"https://openalex.org/S120348307","display_name":"Procedia Computer Science","issn_l":"1877-0509","issn":["1877-0509"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.procs.2022.12.278","pdf_url":null,"source":{"id":"https://openalex.org/S120348307","display_name":"Procedia Computer Science","issn_l":"1877-0509","issn":["1877-0509"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":5,"referenced_works":["https://openalex.org/W1861492603","https://openalex.org/W2026673180","https://openalex.org/W2046033161","https://openalex.org/W2065429801","https://openalex.org/W4205806204"],"related_works":["https://openalex.org/W4384517922","https://openalex.org/W4380449851","https://openalex.org/W4377088509","https://openalex.org/W4318832338","https://openalex.org/W4248383205","https://openalex.org/W3145367191","https://openalex.org/W3125091513","https://openalex.org/W3124914020","https://openalex.org/W2381850946","https://openalex.org/W2068608913"],"abstract_inverted_index":{"Fine-tuning":[0],"a":[1,46,51,77,92,95,122,133,138,158],"pre-trained":[2],"deep":[3,52],"learning":[4,53],"model":[5,54,93,155],"is":[6,30,45,111],"commonly":[7],"preferred":[8],"since":[9],"it":[10,29],"significantly":[11],"lowers":[12],"the":[13,36,68,82,88,106,130,145,152,172,175,181],"training":[14,50],"effort":[15],"while":[16,143],"still":[17],"enabling":[18],"state-of-the-art":[19],"performances":[20],"for":[21,25,49,171],"downstream":[22],"tasks.":[23],"Nevertheless,":[24],"many":[26],"industrial":[27,63],"applications":[28,64],"not":[31],"always":[32],"possible":[33],"to":[34,75,86,147],"collect":[35],"required":[37],"real-world":[38],"images.":[39,57],"In":[40,58,67],"this":[41,59,163],"scenario,":[42],"Domain":[43],"Randomization":[44],"promising":[47],"technique":[48],"on":[55,157],"synthetic":[56,97,134,159],"work,":[60],"two":[61],"real":[62],"are":[65,73,103,119],"illustrated.":[66],"first":[69],"application,":[70,108],"CAD":[71],"models":[72],"exploited":[74],"generate":[76],"realistic":[78],"3D":[79,140],"render":[80],"of":[81,84,90,117,124,132,174,177],"objects":[83,116],"interest":[85,118],"investigate":[87],"feasibility":[89],"fine-tuning":[91],"using":[94,137],"fully":[96],"dataset":[98,135,160],"but":[99],"only":[100],"qualitative":[101],"results":[102],"shown.":[104],"For":[105],"second":[107],"semantic":[109],"fidelity":[110],"favored":[112],"over":[113],"visual":[114],"fidelity:":[115],"drawn":[120],"as":[121],"composition":[123],"primitive":[125],"shapes":[126],"and":[127,183],"textures,":[128],"allowing":[129],"generation":[131],"without":[136],"dedicated":[139],"rendering":[141],"software":[142],"preserving":[144],"flexibility":[146],"achieve":[148],"enough":[149],"variability":[150],"in":[151,180],"dataset.":[153],"A":[154],"fine-tuned":[156],"generated":[161],"with":[162],"approach":[164],"achieved":[165],"an":[166],"estimation":[167],"error":[168],"below":[169],"1%":[170],"measurement":[173],"diameter":[176],"barrels":[178],"used":[179],"Food":[182],"Beverage":[184],"industry.":[185]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4315752438","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-09T10:15:22.634834","created_date":"2023-01-13"}