{"id":"https://openalex.org/W4296906804","doi":"https://doi.org/10.1016/j.procs.2022.09.004","title":"A Bayesian Inference Model for Dynamic Neighbor Discovery in Tactical Networks","display_name":"A Bayesian Inference Model for Dynamic Neighbor Discovery in Tactical Networks","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4296906804","doi":"https://doi.org/10.1016/j.procs.2022.09.004"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.procs.2022.09.004","pdf_url":null,"source":{"id":"https://openalex.org/S120348307","display_name":"Procedia Computer Science","issn_l":"1877-0509","issn":["1877-0509"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://doi.org/10.1016/j.procs.2022.09.004","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5044449306","display_name":"Johannes F. Loevenich","orcid":"https://orcid.org/0000-0002-8149-1600"},"institutions":[{"id":"https://openalex.org/I4210166245","display_name":"Fraunhofer Institute for Communication, Information Processing and Ergonomics","ror":"https://ror.org/05nn0gw40","country_code":"DE","type":"facility","lineage":["https://openalex.org/I4210166245","https://openalex.org/I4923324"]}],"countries":["DE"],"is_corresponding":true,"raw_author_name":"Johannes F. Loevenich","raw_affiliation_strings":["Communication Systems (KOM), Fraunhofer FKIE, Bonn, Germany"],"affiliations":[{"raw_affiliation_string":"Communication Systems (KOM), Fraunhofer FKIE, Bonn, Germany","institution_ids":["https://openalex.org/I4210166245"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037683366","display_name":"Paulo H. L. Rettore","orcid":"https://orcid.org/0000-0002-5491-7274"},"institutions":[{"id":"https://openalex.org/I4210166245","display_name":"Fraunhofer Institute for Communication, Information Processing and Ergonomics","ror":"https://ror.org/05nn0gw40","country_code":"DE","type":"facility","lineage":["https://openalex.org/I4210166245","https://openalex.org/I4923324"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Paulo H.L. Rettore","raw_affiliation_strings":["Communication Systems (KOM), Fraunhofer FKIE, Bonn, Germany"],"affiliations":[{"raw_affiliation_string":"Communication Systems (KOM), Fraunhofer FKIE, Bonn, Germany","institution_ids":["https://openalex.org/I4210166245"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091404899","display_name":"Roberto Rigolin F. Lopes","orcid":"https://orcid.org/0000-0002-0114-5610"},"institutions":[{"id":"https://openalex.org/I4210166245","display_name":"Fraunhofer Institute for Communication, Information Processing and Ergonomics","ror":"https://ror.org/05nn0gw40","country_code":"DE","type":"facility","lineage":["https://openalex.org/I4210166245","https://openalex.org/I4923324"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Roberto Rigolin F. Lopes","raw_affiliation_strings":["Communication Systems (KOM), Fraunhofer FKIE, Bonn, Germany"],"affiliations":[{"raw_affiliation_string":"Communication Systems (KOM), Fraunhofer FKIE, Bonn, Germany","institution_ids":["https://openalex.org/I4210166245"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5053579551","display_name":"Aleksandr Sergeev","orcid":null},"institutions":[{"id":"https://openalex.org/I4210166245","display_name":"Fraunhofer Institute for Communication, Information Processing and Ergonomics","ror":"https://ror.org/05nn0gw40","country_code":"DE","type":"facility","lineage":["https://openalex.org/I4210166245","https://openalex.org/I4923324"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Aleksandr Sergeev","raw_affiliation_strings":["Communication Systems (KOM), Fraunhofer FKIE, Bonn, Germany"],"affiliations":[{"raw_affiliation_string":"Communication Systems (KOM), Fraunhofer FKIE, Bonn, Germany","institution_ids":["https://openalex.org/I4210166245"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5044449306"],"corresponding_institution_ids":["https://openalex.org/I4210166245"],"apc_list":null,"apc_paid":null,"fwci":1.523,"has_fulltext":false,"cited_by_count":8,"citation_normalized_percentile":{"value":0.999931,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":88,"max":90},"biblio":{"volume":"205","issue":null,"first_page":"28","last_page":"38"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11896","display_name":"Opportunistic and Delay-Tolerant Networks","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11896","display_name":"Opportunistic and Delay-Tolerant Networks","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10246","display_name":"Mobile Ad Hoc Networks","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10080","display_name":"Energy Efficient Wireless Sensor Networks","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/dynamic-bayesian-network","display_name":"Dynamic Bayesian network","score":0.6389334},{"id":"https://openalex.org/keywords/neighbor-discovery-protocol","display_name":"Neighbor Discovery Protocol","score":0.51904994},{"id":"https://openalex.org/keywords/approximate-inference","display_name":"Approximate inference","score":0.45156175}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.871579},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.6936292},{"id":"https://openalex.org/C111350023","wikidata":"https://www.wikidata.org/wiki/Q1191869","display_name":"Markov chain Monte Carlo","level":3,"score":0.68714106},{"id":"https://openalex.org/C82142266","wikidata":"https://www.wikidata.org/wiki/Q3456604","display_name":"Dynamic Bayesian network","level":3,"score":0.6389334},{"id":"https://openalex.org/C33724603","wikidata":"https://www.wikidata.org/wiki/Q812540","display_name":"Bayesian network","level":2,"score":0.55209875},{"id":"https://openalex.org/C165932591","wikidata":"https://www.wikidata.org/wiki/Q1547947","display_name":"Neighbor Discovery Protocol","level":4,"score":0.51904994},{"id":"https://openalex.org/C98763669","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov chain","level":2,"score":0.506384},{"id":"https://openalex.org/C160234255","wikidata":"https://www.wikidata.org/wiki/Q812535","display_name":"Bayesian inference","level":3,"score":0.49620658},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.4627303},{"id":"https://openalex.org/C2777472644","wikidata":"https://www.wikidata.org/wiki/Q16968992","display_name":"Approximate inference","level":3,"score":0.45156175},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.41540295},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3903948},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3749494},{"id":"https://openalex.org/C110875604","wikidata":"https://www.wikidata.org/wiki/Q75","display_name":"The Internet","level":2,"score":0.089856565},{"id":"https://openalex.org/C35341882","wikidata":"https://www.wikidata.org/wiki/Q8795","display_name":"Internet Protocol","level":3,"score":0.0},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.procs.2022.09.004","pdf_url":null,"source":{"id":"https://openalex.org/S120348307","display_name":"Procedia Computer Science","issn_l":"1877-0509","issn":["1877-0509"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.procs.2022.09.004","pdf_url":null,"source":{"id":"https://openalex.org/S120348307","display_name":"Procedia Computer Science","issn_l":"1877-0509","issn":["1877-0509"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W2140149474","https://openalex.org/W2187653481","https://openalex.org/W2993448600","https://openalex.org/W3039012799","https://openalex.org/W3082778152","https://openalex.org/W3114491006","https://openalex.org/W3134963760","https://openalex.org/W3163511303","https://openalex.org/W4236105075","https://openalex.org/W4239789016","https://openalex.org/W4246841198","https://openalex.org/W4251813133"],"related_works":["https://openalex.org/W981988864","https://openalex.org/W4286903091","https://openalex.org/W3134187673","https://openalex.org/W3113351345","https://openalex.org/W2775655892","https://openalex.org/W2574982804","https://openalex.org/W2371135740","https://openalex.org/W2074978667","https://openalex.org/W1568590601","https://openalex.org/W1561656573"],"abstract_inverted_index":{"This":[0],"paper":[1],"introduces":[2],"a":[3,37,70,108,114,118,125],"Bayesian":[4,109],"Inference":[5,110],"model":[6,111],"for":[7],"dynamically":[8,147],"changing":[9],"the":[10,18,33,44,49,54,97,130,134,139,144,173],"neighbor":[11,72,101],"discovery":[12,73,102],"parameters":[13,146],"in":[14,27,53,83,182],"order":[15],"to":[16,20,47,95,99,123,149],"minimize":[17],"time":[19,63],"recover":[21],"from":[22],"long":[23],"radio":[24,55],"link":[25,57,135,163],"disconnections":[26],"tactical":[28,39,174],"networks.":[29],"We":[30],"start":[31],"with":[32,58,156],"hypothesis":[34,153],"that":[35,69,91,171],"given":[36],"multi-layer":[38],"system,":[40],"we":[41,67,106],"can":[42,86,179],"use":[43],"in/out":[45,140],"chains":[46],"learn":[48],"distribution":[50,132],"of":[51,113,133,162],"changes":[52],"data":[56,164],"an":[59],"increasing":[60],"confidence":[61],"as":[62],"goes":[64],"by.":[65],"Moreover,":[66],"propose":[68],"static":[71],"configuration":[74,103,127,145],"(e.g.,":[75],"hello":[76],"time,":[77,79],"aggregation":[78],"and":[80,90,117,142],"so":[81],"on)":[82],"dynamic":[84,126,176],"networks":[85],"never":[87],"be":[88],"optimal":[89,100],"it":[92],"is":[93],"possible":[94],"calculate":[96],"close":[98],"dynamically.":[104],"Thus,":[105],"introduce":[107],"composed":[112],"Markov-Chain-Monte-Carlo":[115],"(MCMC)":[116],"Long":[119],"Short-Term":[120],"Memory":[121],"(LSTM)":[122],"compute":[124],"by":[128],"learning":[129],"probability":[131],"conditions":[136],"(computed":[137],"using":[138,159],"model)":[141],"adapting":[143],"according":[148],"this":[150],"distribution.":[151],"Our":[152],"was":[154],"verified":[155],"numerical":[157],"calculations":[158],"different":[160],"patterns":[161],"rate":[165],"change.":[166],"The":[167],"quantitative":[168],"analysis":[169],"suggests":[170],"at":[172],"edge":[175],"control":[177],"signaling":[178],"improve":[180],"connectivity":[181],"ever-changing":[183],"network":[184],"scenarios.":[185]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4296906804","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":2}],"updated_date":"2024-12-31T10:09:46.662068","created_date":"2022-09-24"}