{"id":"https://openalex.org/W3200973167","doi":"https://doi.org/10.1016/j.neunet.2021.09.005","title":"Uncertainty propagation for dropout-based Bayesian neural networks","display_name":"Uncertainty propagation for dropout-based Bayesian neural networks","publication_year":2021,"publication_date":"2021-09-09","ids":{"openalex":"https://openalex.org/W3200973167","doi":"https://doi.org/10.1016/j.neunet.2021.09.005","mag":"3200973167","pmid":"https://pubmed.ncbi.nlm.nih.gov/34562813"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.neunet.2021.09.005","pdf_url":null,"source":{"id":"https://openalex.org/S123019304","display_name":"Neural Networks","issn_l":"0893-6080","issn":["0893-6080","1879-2782"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://doi.org/10.1016/j.neunet.2021.09.005","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5045739098","display_name":"Yuki Mae","orcid":"https://orcid.org/0000-0002-8150-8660"},"institutions":[{"id":"https://openalex.org/I4210132650","display_name":"Denso (Japan)","ror":"https://ror.org/04hkpfa76","country_code":"JP","type":"company","lineage":["https://openalex.org/I4210132650"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yuki Mae","raw_affiliation_strings":["DENSO CORPORATION, 1-1, Showa-cho, Kariya, Aichi, 448-8661, Japan"],"affiliations":[{"raw_affiliation_string":"DENSO CORPORATION, 1-1, Showa-cho, Kariya, Aichi, 448-8661, Japan","institution_ids":["https://openalex.org/I4210132650"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003820265","display_name":"Wataru Kumagai","orcid":"https://orcid.org/0000-0002-3081-5951"},"institutions":[{"id":"https://openalex.org/I74801974","display_name":"The University of Tokyo","ror":"https://ror.org/057zh3y96","country_code":"JP","type":"education","lineage":["https://openalex.org/I74801974"]},{"id":"https://openalex.org/I4210126580","display_name":"RIKEN Center for Advanced Intelligence Project","ror":"https://ror.org/03ckxwf91","country_code":"JP","type":"facility","lineage":["https://openalex.org/I4210110652","https://openalex.org/I4210126580"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Wataru Kumagai","raw_affiliation_strings":["Center for Advanced Intelligence Project, RIKEN, Nihonbashi 1-chome Mitsui Building, 15th floor,1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan","Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan","institution_ids":["https://openalex.org/I74801974"]},{"raw_affiliation_string":"Center for Advanced Intelligence Project, RIKEN, Nihonbashi 1-chome Mitsui Building, 15th floor,1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan","institution_ids":["https://openalex.org/I4210126580"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5088569462","display_name":"Takafumi Kanamori","orcid":"https://orcid.org/0000-0001-6878-5850"},"institutions":[{"id":"https://openalex.org/I4210126580","display_name":"RIKEN Center for Advanced Intelligence Project","ror":"https://ror.org/03ckxwf91","country_code":"JP","type":"facility","lineage":["https://openalex.org/I4210110652","https://openalex.org/I4210126580"]},{"id":"https://openalex.org/I114531698","display_name":"Tokyo Institute of Technology","ror":"https://ror.org/0112mx960","country_code":"JP","type":"education","lineage":["https://openalex.org/I114531698"]}],"countries":["JP"],"is_corresponding":true,"raw_author_name":"Takafumi Kanamori","raw_affiliation_strings":["Center for Advanced Intelligence Project, RIKEN, Nihonbashi 1-chome Mitsui Building, 15th floor,1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan","Department of Mathematical and Computing Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan"],"affiliations":[{"raw_affiliation_string":"Center for Advanced Intelligence Project, RIKEN, Nihonbashi 1-chome Mitsui Building, 15th floor,1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan","institution_ids":["https://openalex.org/I4210126580"]},{"raw_affiliation_string":"Department of Mathematical and Computing Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan","institution_ids":["https://openalex.org/I114531698"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":4,"corresponding_author_ids":["https://openalex.org/A5088569462"],"corresponding_institution_ids":["https://openalex.org/I4210126580","https://openalex.org/I114531698"],"apc_list":{"value":3350,"currency":"USD","value_usd":3350,"provenance":"doaj"},"apc_paid":{"value":3350,"currency":"USD","value_usd":3350,"provenance":"doaj"},"fwci":3.081,"has_fulltext":false,"cited_by_count":30,"citation_normalized_percentile":{"value":0.793627,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"144","issue":null,"first_page":"394","last_page":"406"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/dropout","display_name":"Dropout (neural networks)","score":0.8199064}],"concepts":[{"id":"https://openalex.org/C2776145597","wikidata":"https://www.wikidata.org/wiki/Q25339462","display_name":"Dropout (neural networks)","level":2,"score":0.8199064},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76760435},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6460885},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.60660565},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.576873},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.5395988},{"id":"https://openalex.org/C52740198","wikidata":"https://www.wikidata.org/wiki/Q1539564","display_name":"Importance sampling","level":3,"score":0.4786338},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.46474475},{"id":"https://openalex.org/C160234255","wikidata":"https://www.wikidata.org/wiki/Q812535","display_name":"Bayesian inference","level":3,"score":0.4362472},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.42868203},{"id":"https://openalex.org/C19499675","wikidata":"https://www.wikidata.org/wiki/Q232207","display_name":"Monte Carlo method","level":2,"score":0.39710566},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.14483967},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.12146768},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.neunet.2021.09.005","pdf_url":null,"source":{"id":"https://openalex.org/S123019304","display_name":"Neural Networks","issn_l":"0893-6080","issn":["0893-6080","1879-2782"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/34562813","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.neunet.2021.09.005","pdf_url":null,"source":{"id":"https://openalex.org/S123019304","display_name":"Neural Networks","issn_l":"0893-6080","issn":["0893-6080","1879-2782"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320334764","funder_display_name":"Japan Society for the Promotion of Science","award_id":"20H00576"},{"funder":"https://openalex.org/F4320334764","funder_display_name":"Japan Society for the Promotion of Science","award_id":"17K12653"},{"funder":"https://openalex.org/F4320334764","funder_display_name":"Japan Society for the Promotion of Science","award_id":"19H04071"},{"funder":"https://openalex.org/F4320334764","funder_display_name":"Japan Society for the Promotion of Science","award_id":"17H00764"}],"datasets":[],"versions":[],"referenced_works_count":63,"referenced_works":["https://openalex.org/W135467536","https://openalex.org/W1506806321","https://openalex.org/W1549656520","https://openalex.org/W1567512734","https://openalex.org/W1583837637","https://openalex.org/W1591801644","https://openalex.org/W1618905105","https://openalex.org/W1689711448","https://openalex.org/W1773652845","https://openalex.org/W1799366690","https://openalex.org/W1821462560","https://openalex.org/W1975672287","https://openalex.org/W2010629420","https://openalex.org/W2088538739","https://openalex.org/W2095705004","https://openalex.org/W2098742124","https://openalex.org/W2103496339","https://openalex.org/W2108677974","https://openalex.org/W2112796928","https://openalex.org/W2167433878","https://openalex.org/W2268946161","https://openalex.org/W2480078828","https://openalex.org/W2559655401","https://openalex.org/W2560835477","https://openalex.org/W2570764145","https://openalex.org/W2590796488","https://openalex.org/W2594735566","https://openalex.org/W2604272474","https://openalex.org/W2607662938","https://openalex.org/W2626778328","https://openalex.org/W2626967530","https://openalex.org/W2734358244","https://openalex.org/W2750384547","https://openalex.org/W283324283","https://openalex.org/W2902986194","https://openalex.org/W2904979775","https://openalex.org/W2907020378","https://openalex.org/W2914584698","https://openalex.org/W2920112539","https://openalex.org/W2942689582","https://openalex.org/W2949117887","https://openalex.org/W2949790628","https://openalex.org/W2951654389","https://openalex.org/W2951786554","https://openalex.org/W2962689739","https://openalex.org/W2962730596","https://openalex.org/W2963238274","https://openalex.org/W2963266340","https://openalex.org/W2964016190","https://openalex.org/W2964059111","https://openalex.org/W2964144363","https://openalex.org/W2964832966","https://openalex.org/W2965880937","https://openalex.org/W2971165121","https://openalex.org/W2979906247","https://openalex.org/W2981482273","https://openalex.org/W3011367903","https://openalex.org/W3037974479","https://openalex.org/W3099499532","https://openalex.org/W35527955","https://openalex.org/W4251223340","https://openalex.org/W4298205916","https://openalex.org/W4298740781"],"related_works":["https://openalex.org/W4303857162","https://openalex.org/W3049691116","https://openalex.org/W3015855446","https://openalex.org/W2969189870","https://openalex.org/W2965643117","https://openalex.org/W2950975704","https://openalex.org/W2505726097","https://openalex.org/W2407375987","https://openalex.org/W2372267530","https://openalex.org/W2010643158"],"abstract_inverted_index":{"Uncertainty":[0],"evaluation":[1],"is":[2,43,80,110,165],"a":[3,83,111,119,139,148],"core":[4],"technique":[5],"when":[6],"deep":[7],"neural":[8,63,149,158],"networks":[9,64],"(DNNs)":[10],"are":[11],"used":[12],"in":[13,28,71,191],"real-world":[14],"problems.":[15],"In":[16,48],"practical":[17],"applications,":[18],"we":[19,137],"often":[20],"encounter":[21],"unexpected":[22],"samples":[23],"that":[24],"have":[25,66,100],"not":[26,167],"seen":[27],"the":[29,35,75,94,104,134,155,182,200],"training":[30],"process.":[31],"Not":[32],"only":[33,168],"achieving":[34],"high-prediction":[36],"accuracy":[37],"but":[38,172],"also":[39,173],"detecting":[40],"uncertain":[41],"data":[42],"significant":[44],"for":[45,58,98,114],"safety-critical":[46],"systems.":[47],"statistics":[49],"and":[50,185,199],"machine":[51],"learning,":[52],"Bayesian":[53,62,84,157],"inference":[54],"has":[55],"been":[56,101],"exploited":[57],"uncertainty":[59,115],"evaluation.":[60],"The":[61],"(BNNs)":[65],"recently":[67],"attracted":[68],"considerable":[69],"attention":[70],"this":[72,88],"context,":[73],"as":[74,82,178],"DNN":[76],"trained":[77,151],"using":[78,152,197],"dropout":[79,109,153],"interpreted":[81],"method.":[85],"Based":[86],"on":[87],"interpretation,":[89],"several":[90],"methods":[91],"to":[92,142,154,169,174],"calculate":[93],"Bayes":[95],"predictive":[96],"distribution":[97],"DNNs":[99,126],"developed.":[102],"Though":[103],"Monte-Carlo":[105],"method":[106,113,141,146,164,190],"called":[107],"MC":[108],"popular":[112],"evaluation,":[116],"it":[117],"requires":[118],"number":[120],"of":[121,125,188,194],"repeated":[122],"feed-forward":[123,170],"calculations":[124],"with":[127,160,203],"randomly":[128],"sampled":[129],"weight":[130],"parameters.":[131],"To":[132],"overcome":[133],"computational":[135,183],"issue,":[136],"propose":[138],"sampling-free":[140],"evaluate":[143],"uncertainty.":[144],"Our":[145,163],"converts":[147],"network":[150,159],"corresponding":[156],"variance":[161],"propagation.":[162],"available":[166],"NNs":[171,176],"recurrent":[175],"such":[177],"LSTM.":[179],"We":[180],"report":[181],"efficiency":[184],"statistical":[186],"reliability":[187],"our":[189],"numerical":[192],"experiments":[193],"language":[195],"modeling":[196],"RNNs,":[198],"out-of-distribution":[201],"detection":[202],"DNNs.":[204]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3200973167","counts_by_year":[{"year":2024,"cited_by_count":10},{"year":2023,"cited_by_count":13},{"year":2022,"cited_by_count":6}],"updated_date":"2025-01-07T18:58:13.079541","created_date":"2021-09-27"}