{"id":"https://openalex.org/W3184337546","doi":"https://doi.org/10.1016/j.media.2021.102165","title":"Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification","display_name":"Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification","publication_year":2021,"publication_date":"2021-07-14","ids":{"openalex":"https://openalex.org/W3184337546","doi":"https://doi.org/10.1016/j.media.2021.102165","mag":"3184337546","pmid":"https://pubmed.ncbi.nlm.nih.gov/34303169"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.media.2021.102165","pdf_url":null,"source":{"id":"https://openalex.org/S116571295","display_name":"Medical Image Analysis","issn_l":"1361-8415","issn":["1361-8415","1361-8423","1361-8431"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://doi.org/10.1016/j.media.2021.102165","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5051421852","display_name":"Niccol\u00f2 Marini","orcid":"https://orcid.org/0000-0002-5273-5741"},"institutions":[{"id":"https://openalex.org/I173439891","display_name":"HES-SO University of Applied Sciences and Arts Western Switzerland","ror":"https://ror.org/01xkakk17","country_code":"CH","type":"education","lineage":["https://openalex.org/I173439891"]},{"id":"https://openalex.org/I114457229","display_name":"University of Geneva","ror":"https://ror.org/01swzsf04","country_code":"CH","type":"funder","lineage":["https://openalex.org/I114457229"]}],"countries":["CH"],"is_corresponding":true,"raw_author_name":"Niccol\u00f2 Marini","raw_affiliation_strings":["Centre Universitaire d'Informatique, University of Geneva, Carouge 1227, Switzerland","Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Technop\u00f4le 3, Sierre 3960, Switzerland"],"affiliations":[{"raw_affiliation_string":"Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Technop\u00f4le 3, Sierre 3960, Switzerland","institution_ids":["https://openalex.org/I173439891"]},{"raw_affiliation_string":"Centre Universitaire d'Informatique, University of Geneva, Carouge 1227, Switzerland","institution_ids":["https://openalex.org/I114457229"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038717324","display_name":"Sebastian Ot\u00e1lora","orcid":"https://orcid.org/0000-0003-2125-8476"},"institutions":[{"id":"https://openalex.org/I173439891","display_name":"HES-SO University of Applied Sciences and Arts Western Switzerland","ror":"https://ror.org/01xkakk17","country_code":"CH","type":"education","lineage":["https://openalex.org/I173439891"]},{"id":"https://openalex.org/I114457229","display_name":"University of Geneva","ror":"https://ror.org/01swzsf04","country_code":"CH","type":"funder","lineage":["https://openalex.org/I114457229"]}],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Sebastian Ot\u00e1lora","raw_affiliation_strings":["Centre Universitaire d'Informatique, University of Geneva, Carouge 1227, Switzerland","Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Technop\u00f4le 3, Sierre 3960, Switzerland"],"affiliations":[{"raw_affiliation_string":"Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Technop\u00f4le 3, Sierre 3960, Switzerland","institution_ids":["https://openalex.org/I173439891"]},{"raw_affiliation_string":"Centre Universitaire d'Informatique, University of Geneva, Carouge 1227, Switzerland","institution_ids":["https://openalex.org/I114457229"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061961859","display_name":"Henning M\u00fcller","orcid":"https://orcid.org/0000-0001-6800-9878"},"institutions":[{"id":"https://openalex.org/I114457229","display_name":"University of Geneva","ror":"https://ror.org/01swzsf04","country_code":"CH","type":"funder","lineage":["https://openalex.org/I114457229"]},{"id":"https://openalex.org/I173439891","display_name":"HES-SO University of Applied Sciences and Arts Western Switzerland","ror":"https://ror.org/01xkakk17","country_code":"CH","type":"education","lineage":["https://openalex.org/I173439891"]}],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Henning M\u00fcller","raw_affiliation_strings":["Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Technop\u00f4le 3, Sierre 3960, Switzerland","Medical faculty, University of Geneva, Geneva 1211, Switzerland"],"affiliations":[{"raw_affiliation_string":"Medical faculty, University of Geneva, Geneva 1211, Switzerland","institution_ids":["https://openalex.org/I114457229"]},{"raw_affiliation_string":"Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Technop\u00f4le 3, Sierre 3960, Switzerland","institution_ids":["https://openalex.org/I173439891"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5075411914","display_name":"Manfredo Atzori","orcid":"https://orcid.org/0000-0001-5397-2063"},"institutions":[{"id":"https://openalex.org/I173439891","display_name":"HES-SO University of Applied Sciences and Arts Western Switzerland","ror":"https://ror.org/01xkakk17","country_code":"CH","type":"education","lineage":["https://openalex.org/I173439891"]},{"id":"https://openalex.org/I138689650","display_name":"University of Padua","ror":"https://ror.org/00240q980","country_code":"IT","type":"funder","lineage":["https://openalex.org/I138689650"]}],"countries":["CH","IT"],"is_corresponding":false,"raw_author_name":"Manfredo Atzori","raw_affiliation_strings":["Department of Neurosciences, University of Padua, Via Giustiniani 2, Padua, 35128, Italy","Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Technop\u00f4le 3, Sierre 3960, Switzerland"],"affiliations":[{"raw_affiliation_string":"Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Technop\u00f4le 3, Sierre 3960, Switzerland","institution_ids":["https://openalex.org/I173439891"]},{"raw_affiliation_string":"Department of Neurosciences, University of Padua, Via Giustiniani 2, Padua, 35128, Italy","institution_ids":["https://openalex.org/I138689650"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5051421852"],"corresponding_institution_ids":["https://openalex.org/I173439891","https://openalex.org/I114457229"],"apc_list":{"value":3970,"currency":"USD","value_usd":3970},"apc_paid":{"value":3970,"currency":"USD","value_usd":3970},"fwci":5.319,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":51,"citation_normalized_percentile":{"value":0.999974,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"73","issue":null,"first_page":"102165","last_page":"102165"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9929,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12874","display_name":"Digital Imaging for Blood Diseases","score":0.9919,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/digital-pathology","display_name":"Digital Pathology","score":0.6483637}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7753715},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.7640715},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.68433076},{"id":"https://openalex.org/C2777522853","wikidata":"https://www.wikidata.org/wiki/Q5276128","display_name":"Digital pathology","level":2,"score":0.6483637},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5678486},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.47814333},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.45970544},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.45596072},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.38814345}],"mesh":[{"descriptor_ui":"D016571","descriptor_name":"Neural Networks, Computer","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D011471","descriptor_name":"Prostatic Neoplasms","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D008297","descriptor_name":"Male","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D060787","descriptor_name":"Neoplasm Grading","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D011471","descriptor_name":"Prostatic Neoplasms","qualifier_ui":"Q000000981","qualifier_name":"diagnostic imaging","is_major_topic":false},{"descriptor_ui":"D000069553","descriptor_name":"Supervised Machine Learning","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.media.2021.102165","pdf_url":null,"source":{"id":"https://openalex.org/S116571295","display_name":"Medical Image Analysis","issn_l":"1361-8415","issn":["1361-8415","1361-8423","1361-8431"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arodes.hes-so.ch/record/9769","pdf_url":"https://arodes.hes-so.ch/record/9769/files/Marini_2021_semi-supervised_training.pdf","source":{"id":"https://openalex.org/S4306402432","display_name":"ArODES (HES-SO (https://www.hes-so.ch/))","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210088449","host_organization_name":"HES-SO Gen\u00e8ve","host_organization_lineage":["https://openalex.org/I4210088449"],"host_organization_lineage_names":["HES-SO Gen\u00e8ve"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://hdl.handle.net/11577/3414363","pdf_url":"https://www.research.unipd.it/bitstream/11577/3414363/2/1-s2.0-S1361841521002115-main.pdf","source":{"id":"https://openalex.org/S4306402547","display_name":"Padua Research Archive (University of Padova)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I138689650","host_organization_name":"University of Padua","host_organization_lineage":["https://openalex.org/I138689650"],"host_organization_lineage_names":["University of Padua"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/34303169","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.media.2021.102165","pdf_url":null,"source":{"id":"https://openalex.org/S116571295","display_name":"Medical Image Analysis","issn_l":"1361-8415","issn":["1361-8415","1361-8423","1361-8431"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320314745","funder_display_name":"FP7 Coherent Development of Research Policies","award_id":"825292"},{"funder":"https://openalex.org/F4320332999","funder_display_name":"Horizon 2020 Framework Programme","award_id":"825292"}],"datasets":[],"versions":[],"referenced_works_count":80,"referenced_works":["https://openalex.org/W10980763","https://openalex.org/W1544092585","https://openalex.org/W1583837637","https://openalex.org/W1926129581","https://openalex.org/W1976460797","https://openalex.org/W2029673502","https://openalex.org/W2083043726","https://openalex.org/W2085751750","https://openalex.org/W2108598243","https://openalex.org/W2113290770","https://openalex.org/W2122360935","https://openalex.org/W2134948318","https://openalex.org/W2165544861","https://openalex.org/W2168056522","https://openalex.org/W2185323257","https://openalex.org/W2191311785","https://openalex.org/W2295582178","https://openalex.org/W2329659234","https://openalex.org/W2340422569","https://openalex.org/W2340714417","https://openalex.org/W2346062110","https://openalex.org/W2511730936","https://openalex.org/W2549139847","https://openalex.org/W2592929672","https://openalex.org/W2592936145","https://openalex.org/W2604272474","https://openalex.org/W2750023899","https://openalex.org/W2751723768","https://openalex.org/W2752252737","https://openalex.org/W2753908758","https://openalex.org/W2771169143","https://openalex.org/W2804905867","https://openalex.org/W2805886241","https://openalex.org/W2901612843","https://openalex.org/W2901968578","https://openalex.org/W2903158431","https://openalex.org/W2939957413","https://openalex.org/W2943152387","https://openalex.org/W2943987826","https://openalex.org/W2947078801","https://openalex.org/W2948842019","https://openalex.org/W2949226441","https://openalex.org/W2955152335","https://openalex.org/W2956228567","https://openalex.org/W2963446712","https://openalex.org/W2963735582","https://openalex.org/W2964317695","https://openalex.org/W2964358045","https://openalex.org/W2968868585","https://openalex.org/W2969278648","https://openalex.org/W2980846262","https://openalex.org/W2982802130","https://openalex.org/W2999091210","https://openalex.org/W2999171691","https://openalex.org/W3011303530","https://openalex.org/W3012121305","https://openalex.org/W3036586801","https://openalex.org/W3040734937","https://openalex.org/W3043162792","https://openalex.org/W3083376569","https://openalex.org/W3091451924","https://openalex.org/W3092232537","https://openalex.org/W3099319035","https://openalex.org/W3099760791","https://openalex.org/W3100003598","https://openalex.org/W3118471509","https://openalex.org/W3130071691","https://openalex.org/W3132964805","https://openalex.org/W3162420793","https://openalex.org/W4212774754","https://openalex.org/W4233026140","https://openalex.org/W4235582708","https://openalex.org/W4236965008","https://openalex.org/W4238327235","https://openalex.org/W4239167255","https://openalex.org/W4246550052","https://openalex.org/W4249502209","https://openalex.org/W4252684946","https://openalex.org/W4301409532","https://openalex.org/W647272629"],"related_works":["https://openalex.org/W4375867731","https://openalex.org/W4312417841","https://openalex.org/W4293226380","https://openalex.org/W4226493464","https://openalex.org/W3135697610","https://openalex.org/W3133861977","https://openalex.org/W3103566983","https://openalex.org/W3029198973","https://openalex.org/W2951211570","https://openalex.org/W1975767702"],"abstract_inverted_index":{"Convolutional":[0],"neural":[1,231],"networks":[2],"(CNNs)":[3],"are":[4,18,93,107,168,175,252,275],"state-of-the-art":[5],"computer":[6],"vision":[7],"techniques":[8],"for":[9,13,124],"various":[10,199],"tasks,":[11],"particularly":[12],"image":[14,59,116,329],"classification.":[15],"However,":[16],"there":[17],"domains":[19],"where":[20],"the":[21,38,43,52,63,82,97,112,115,125,133,142,145,243,268,283,288,297,301,305,309,316,320,336,345,349,363,371,383,397,415,419],"training":[22,224,273,282],"of":[23,37,45,51,54,66,88,99,114,173,237,267,308,352,421],"classification":[24,158,357],"models":[25,159,179,218,251,337,405],"that":[26,92,180,192,395,406],"generalize":[27,181,193,340,407],"on":[28,212,296,341,408],"several":[29],"datasets":[30,47,155,196,409,423],"is":[31,127,160,279,294,359,401],"still":[32,161],"an":[33,162],"open":[34],"challenge":[35],"because":[36],"highly":[39,108],"heterogeneous":[40,109,195],"data":[41,167,174,206],"and":[42,85,129,152,201,215,261,314,348,381,418],"lack":[44,420],"large":[46,422],"with":[48,254,287,396,424],"local":[49,203,306,353,425],"annotations":[50,307,354],"regions":[53,122],"interest,":[55],"such":[56,76],"as":[57,77,136],"histopathology":[58,90,105],"analysis.":[60],"Histopathology":[61],"concerns":[62,81],"microscopic":[64],"analysis":[65,87,207],"tissue":[67],"specimens":[68],"processed":[69],"in":[70,96,132,147,219],"glass":[71],"slides":[72],"to":[73,111,140,156,177,189,194,241,338,366,377,388,403],"identify":[74],"diseases":[75],"cancer.":[78],"Digital":[79,104],"pathology":[80],"acquisition,":[83],"management":[84],"automatic":[86],"digitized":[89],"images":[91,106,214],"large,":[94],"having":[95],"order":[98],"100\u20320002":[100],"pixels":[101],"per":[102],"image.":[103],"due":[110],"variability":[113],"acquisition":[117],"procedures.":[118],"Creating":[119],"locally":[120],"labeled":[121],"(required":[123],"training)":[126],"time-consuming":[128],"often":[130],"expensive":[131],"medical":[134],"field,":[135],"physicians":[137],"usually":[138],"have":[139],"annotate":[141],"data.":[143,291],"Despite":[144],"advances":[146],"deep":[148],"learning,":[149],"leveraging":[150],"strongly":[151,289],"weakly":[153],"annotated":[154,290],"train":[157,190,242,404],"unsolved":[163],"problem,":[164],"mainly":[165],"when":[166],"very":[169],"heterogeneous.":[170],"Large":[171],"amounts":[172],"needed":[176],"create":[178],"well.":[182],"This":[183],"paper":[184],"presents":[185],"a":[186,222,235],"novel":[187],"approach":[188],"CNNs":[191],"originating":[197],"from":[198,368,379,390,410],"sources":[200],"without":[202],"annotations.":[204,426],"The":[205,226,249,277,322,332,356,392],"pipeline":[208],"targets":[209],"Gleason":[210,330],"grading":[211],"prostate":[213],"includes":[216],"two":[217,250,255,269],"sequence,":[220],"following":[221],"teacher/student":[223,257,333,398],"paradigm.":[225],"teacher":[227],"model":[228,245,285,299],"(a":[229,246],"high-capacity":[230],"network)":[232],"automatically":[233],"annotates":[234],"set":[236],"pseudo-labeled":[238],"patches":[239],"used":[240],"student":[244,272,284,298],"smaller":[247],"network).":[248],"trained":[253],"different":[256,412],"approaches:":[258],"semi-supervised":[259],"learning":[260],"semi-weekly":[262],"supervised":[263],"learning.":[264],"For":[265],"each":[266],"approaches,":[270],"three":[271],"variants":[274],"presented.":[276],"baseline":[278],"provided":[280],"by":[281],"only":[286],"Classification":[292],"performance":[293,358],"evaluated":[295],"at":[300,315,362,370,382],"patch":[302],"level":[303,318],"(using":[304,319],"Tissue":[310],"Micro-Arrays":[311],"Zurich":[312],"dataset)":[313],"global":[317],"TCGA-PRAD,":[321],"Cancer":[323],"Genome":[324],"Atlas-PRostate":[325],"ADenocarcinoma,":[326],"whole":[327],"slide":[328],"score).":[331],"paradigm":[334],"allows":[335],"better":[339],"both":[342,361],"datasets,":[343],"despite":[344,414],"inter-dataset":[346,416],"heterogeneity":[347,417],"small":[350],"number":[351],"used.":[355],"improved":[360],"patch-level":[364],"(up":[365,376,387],"\u03ba=0.6127\u00b10.0133":[367],"\u03ba=0.5667\u00b10.0285),":[369],"TMA":[372],"core-level":[373],"(Gleason":[374,385],"score)":[375,386],"\u03ba=0.7645\u00b10.0231":[378],"\u03ba=0.7186\u00b10.0306)":[380],"WSI-level":[384],"\u03ba=0.4529\u00b10.0512":[389],"\u03ba=0.2293\u00b10.1350).":[391],"results":[393],"show":[394],"paradigm,":[399],"it":[400],"possible":[402],"entirely":[411],"sources,":[413]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3184337546","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":14},{"year":2023,"cited_by_count":16},{"year":2022,"cited_by_count":16},{"year":2021,"cited_by_count":2}],"updated_date":"2025-04-24T18:51:10.650600","created_date":"2021-08-02"}