{"id":"https://openalex.org/W2912714401","doi":"https://doi.org/10.1016/j.jmva.2022.105069","title":"Nonparametric variable screening for multivariate additive models","display_name":"Nonparametric variable screening for multivariate additive models","publication_year":2022,"publication_date":"2022-06-23","ids":{"openalex":"https://openalex.org/W2912714401","doi":"https://doi.org/10.1016/j.jmva.2022.105069","mag":"2912714401"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.jmva.2022.105069","pdf_url":null,"source":{"id":"https://openalex.org/S133905466","display_name":"Journal of Multivariate Analysis","issn_l":"0047-259X","issn":["0047-259X","1095-7243"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://doi.org/10.1016/j.jmva.2022.105069","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5085288352","display_name":"Hui Ding","orcid":"https://orcid.org/0000-0002-6864-2515"},"institutions":[{"id":"https://openalex.org/I137056471","display_name":"Nanjing University of Finance and Economics","ror":"https://ror.org/031y8am81","country_code":"CN","type":"education","lineage":["https://openalex.org/I137056471"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hui Ding","raw_affiliation_strings":["School of Economics, Nanjing University of Finance and Economics, 3 WenYuan Road, Nanjing, 210023, PR China"],"affiliations":[{"raw_affiliation_string":"School of Economics, Nanjing University of Finance and Economics, 3 WenYuan Road, Nanjing, 210023, PR China","institution_ids":["https://openalex.org/I137056471"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100409895","display_name":"Jian Zhang","orcid":"https://orcid.org/0000-0001-8405-2323"},"institutions":[{"id":"https://openalex.org/I20581793","display_name":"University of Kent","ror":"https://ror.org/00xkeyj56","country_code":"GB","type":"education","lineage":["https://openalex.org/I20581793"]}],"countries":["GB"],"is_corresponding":true,"raw_author_name":"Jian Zhang","raw_affiliation_strings":["School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, Kent CT2 7FS, United Kingdom"],"affiliations":[{"raw_affiliation_string":"School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, Kent CT2 7FS, United Kingdom","institution_ids":["https://openalex.org/I20581793"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5008413852","display_name":"Riquan Zhang","orcid":"https://orcid.org/0000-0001-5206-5568"},"institutions":[{"id":"https://openalex.org/I66867065","display_name":"East China Normal University","ror":"https://ror.org/02n96ep67","country_code":"CN","type":"education","lineage":["https://openalex.org/I66867065"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Riquan Zhang","raw_affiliation_strings":["School of Statistics, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China"],"affiliations":[{"raw_affiliation_string":"School of Statistics, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China","institution_ids":["https://openalex.org/I66867065"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5100409895"],"corresponding_institution_ids":["https://openalex.org/I20581793"],"apc_list":{"value":3060,"currency":"USD","value_usd":3060,"provenance":"doaj"},"apc_paid":{"value":3060,"currency":"USD","value_usd":3060,"provenance":"doaj"},"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":"192","issue":null,"first_page":"105069","last_page":"105069"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C119043178","wikidata":"https://www.wikidata.org/wiki/Q320723","display_name":"Covariate","level":2,"score":0.8730044},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.7589842},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.70284647},{"id":"https://openalex.org/C102366305","wikidata":"https://www.wikidata.org/wiki/Q1097688","display_name":"Nonparametric statistics","level":2,"score":0.69281435},{"id":"https://openalex.org/C2776436953","wikidata":"https://www.wikidata.org/wiki/Q5163215","display_name":"Consistency (knowledge bases)","level":2,"score":0.48113552},{"id":"https://openalex.org/C122123141","wikidata":"https://www.wikidata.org/wiki/Q176623","display_name":"Random variable","level":2,"score":0.4602197},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.44780126},{"id":"https://openalex.org/C38180746","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate analysis","level":2,"score":0.42962262},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.42083693},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.35310966},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.32561898},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.19756058},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.19189891},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.085700035}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.jmva.2022.105069","pdf_url":null,"source":{"id":"https://openalex.org/S133905466","display_name":"Journal of Multivariate Analysis","issn_l":"0047-259X","issn":["0047-259X","1095-7243"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://kar.kent.ac.uk/95790/1/Zhang_Nonparametric%20variable%20screening.pdf","pdf_url":"https://kar.kent.ac.uk/95790/1/Zhang_Nonparametric%20variable%20screening.pdf","source":{"id":"https://openalex.org/S4377196264","display_name":"Kent Academic Repository (University of Kent)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I20581793","host_organization_name":"University of Kent","host_organization_lineage":["https://openalex.org/I20581793"],"host_organization_lineage_names":["University of Kent"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"acceptedVersion","is_accepted":true,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.jmva.2022.105069","pdf_url":null,"source":{"id":"https://openalex.org/S133905466","display_name":"Journal of Multivariate Analysis","issn_l":"0047-259X","issn":["0047-259X","1095-7243"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.79,"display_name":"Good health and well-being","id":"https://metadata.un.org/sdg/3"}],"grants":[{"funder":"https://openalex.org/F4320320698","funder_display_name":"National University of Singapore","award_id":null},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"11901286"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"11971171"},{"funder":"https://openalex.org/F4320322370","funder_display_name":"East China Normal University","award_id":null},{"funder":"https://openalex.org/F4320327912","funder_display_name":"Higher Education Discipline Innovation Project","award_id":"B14019"}],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1608812842","https://openalex.org/W1994339276","https://openalex.org/W2056938357","https://openalex.org/W2062125287","https://openalex.org/W2065274576","https://openalex.org/W2080726496","https://openalex.org/W2082246284","https://openalex.org/W2121044470","https://openalex.org/W2125789330","https://openalex.org/W2138329097","https://openalex.org/W2140641091","https://openalex.org/W2154065358","https://openalex.org/W2182424544","https://openalex.org/W2593996946","https://openalex.org/W2768498986","https://openalex.org/W3098452830","https://openalex.org/W3099185210","https://openalex.org/W3099609308","https://openalex.org/W3104828230","https://openalex.org/W3174962921","https://openalex.org/W53657057"],"related_works":["https://openalex.org/W3017203039","https://openalex.org/W2778952182","https://openalex.org/W2770009367","https://openalex.org/W2495778081","https://openalex.org/W2162923601","https://openalex.org/W2114467513","https://openalex.org/W2099536028","https://openalex.org/W2067850036","https://openalex.org/W1982864826","https://openalex.org/W1495326737"],"abstract_inverted_index":{"In":[0],"this":[1],"paper":[2],"we":[3,101],"develop":[4],"a":[5,12,107,130],"novel":[6],"procedure":[7,67,105,124],"of":[8,37,55,63,116,132,138],"variable":[9],"screening":[10],"for":[11],"multivariate":[13],"additive":[14],"random-effects":[15,84],"model,":[16],"based":[17],"on":[18,49,91],"B-spline":[19],"function":[20],"approximations.":[21],"With":[22],"these":[23],"approximations,":[24],"the":[25,35,41,56,61,74,92,104,123],"so-called":[26],"signal-to-noise":[27],"ratio":[28],"(SNR)":[29],"can":[30],"be":[31],"defined":[32],"to":[33,70,76,125],"inform":[34],"importance":[36],"each":[38],"covariate":[39],"in":[40,114,141],"model.":[42],"Then,":[43],"SNR-based":[44],"forward":[45],"filtering":[46],"is":[47,68],"conducted":[48],"covariates":[50],"by":[51],"using":[52],"iterative":[53],"projections":[54],"multiple":[57],"response":[58],"data":[59],"into":[60],"space":[62],"covariates.":[64],"The":[65],"proposed":[66],"easy":[69],"use":[71],"and":[72,118],"allows":[73],"user":[75],"pool":[77],"non-linear":[78],"information":[79],"across":[80],"heterogeneous":[81],"subjects":[82],"through":[83],"variables.":[85],"We":[86,120],"establish":[87],"an":[88],"asymptotic":[89],"theory":[90],"selection":[93],"consistency":[94],"under":[95],"some":[96,111],"regularity":[97],"conditions.":[98],"By":[99],"simulations,":[100],"show":[102],"that":[103,134],"has":[106],"superior":[108],"performance":[109],"over":[110],"existing":[112],"methods":[113],"terms":[115],"sensitivity":[117],"specificity.":[119],"also":[121],"apply":[122],"anti-cancer":[126,139],"drug":[127],"data,":[128],"revealing":[129],"set":[131],"biomarkers":[133],"potentially":[135],"influence":[136],"concentrations":[137],"drugs":[140],"cancer":[142],"cell":[143],"lines.":[144]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2912714401","counts_by_year":[],"updated_date":"2025-01-18T00:51:30.814414","created_date":"2019-02-21"}