{"id":"https://openalex.org/W2020926105","doi":"https://doi.org/10.1016/j.jmva.2010.03.001","title":"The efficiency of logistic regression compared to normal discriminant analysis under class-conditional classification noise","display_name":"The efficiency of logistic regression compared to normal discriminant analysis under class-conditional classification noise","publication_year":2010,"publication_date":"2010-03-22","ids":{"openalex":"https://openalex.org/W2020926105","doi":"https://doi.org/10.1016/j.jmva.2010.03.001","mag":"2020926105"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1016/j.jmva.2010.03.001","pdf_url":null,"source":{"id":"https://openalex.org/S133905466","display_name":"Journal of Multivariate Analysis","issn_l":"0047-259X","issn":["0047-259X","1095-7243"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102859368","display_name":"Yingtao Bi","orcid":"https://orcid.org/0000-0003-4088-6558"},"institutions":[{"id":"https://openalex.org/I103635307","display_name":"University of California, Riverside","ror":"https://ror.org/03nawhv43","country_code":"US","type":"education","lineage":["https://openalex.org/I103635307"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yingtao Bi","raw_affiliation_strings":["Department of Statistics, University of California, Riverside, CA, 92521, United States#TAB#"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, University of California, Riverside, CA, 92521, United States#TAB#","institution_ids":["https://openalex.org/I103635307"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5034400738","display_name":"Daniel R. Jeske","orcid":"https://orcid.org/0000-0002-0214-7992"},"institutions":[{"id":"https://openalex.org/I103635307","display_name":"University of California, Riverside","ror":"https://ror.org/03nawhv43","country_code":"US","type":"education","lineage":["https://openalex.org/I103635307"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Daniel R. Jeske","raw_affiliation_strings":["Department of Statistics, University of California, Riverside, CA, 92521, United States#TAB#"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, University of California, Riverside, CA, 92521, United States#TAB#","institution_ids":["https://openalex.org/I103635307"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":3060,"currency":"USD","value_usd":3060,"provenance":"doaj"},"apc_paid":null,"fwci":1.975,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":31,"citation_normalized_percentile":{"value":0.944796,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":"101","issue":"7","first_page":"1622","last_page":"1637"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9927,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11871","display_name":"Advanced Statistical Methods and Models","score":0.9873,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mahalanobis-distance","display_name":"Mahalanobis distance","score":0.64899814},{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.48429957}],"concepts":[{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.7951149},{"id":"https://openalex.org/C69738355","wikidata":"https://www.wikidata.org/wiki/Q1228929","display_name":"Linear discriminant analysis","level":2,"score":0.67039},{"id":"https://openalex.org/C1921717","wikidata":"https://www.wikidata.org/wiki/Q1334846","display_name":"Mahalanobis distance","level":2,"score":0.64899814},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6172687},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.6131999},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5639254},{"id":"https://openalex.org/C151956035","wikidata":"https://www.wikidata.org/wiki/Q1132755","display_name":"Logistic regression","level":2,"score":0.5039813},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.48429957},{"id":"https://openalex.org/C78397625","wikidata":"https://www.wikidata.org/wiki/Q192487","display_name":"Discriminant","level":2,"score":0.47990215},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46069428},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.44536558},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.18189147},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1016/j.jmva.2010.03.001","pdf_url":null,"source":{"id":"https://openalex.org/S133905466","display_name":"Journal of Multivariate Analysis","issn_l":"0047-259X","issn":["0047-259X","1095-7243"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","score":0.74,"display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1580256954","https://openalex.org/W1861600621","https://openalex.org/W1998839045","https://openalex.org/W2014651914","https://openalex.org/W2017137572","https://openalex.org/W2024424774","https://openalex.org/W2034841618","https://openalex.org/W2049496090","https://openalex.org/W2062838592","https://openalex.org/W2080244961","https://openalex.org/W2086431863","https://openalex.org/W2090578816","https://openalex.org/W2130656427","https://openalex.org/W2137446405","https://openalex.org/W2149569695","https://openalex.org/W2151657146","https://openalex.org/W2163614729","https://openalex.org/W2168609060","https://openalex.org/W2795536332","https://openalex.org/W4246784033","https://openalex.org/W77170824"],"related_works":["https://openalex.org/W3147024994","https://openalex.org/W3021047493","https://openalex.org/W2374055396","https://openalex.org/W2366124773","https://openalex.org/W2362114017","https://openalex.org/W2350751952","https://openalex.org/W2063246903","https://openalex.org/W2021817983","https://openalex.org/W1999647744","https://openalex.org/W1978302214"],"abstract_inverted_index":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2020926105","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":5},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":2},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":1},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":1},{"year":2013,"cited_by_count":2},{"year":2012,"cited_by_count":1}],"updated_date":"2025-01-17T15:23:34.274768","created_date":"2016-06-24"}