{"id":"https://openalex.org/W4400674392","doi":"https://doi.org/10.1016/j.jag.2024.104036","title":"An ensemble framework for explainable geospatial machine learning models","display_name":"An ensemble framework for explainable geospatial machine learning models","publication_year":2024,"publication_date":"2024-07-16","ids":{"openalex":"https://openalex.org/W4400674392","doi":"https://doi.org/10.1016/j.jag.2024.104036"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.jag.2024.104036","pdf_url":null,"source":{"id":"https://openalex.org/S4210179989","display_name":"International Journal of Applied Earth Observation and Geoinformation","issn_l":"1569-8432","issn":["1569-8432","1872-826X"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://doi.org/10.1016/j.jag.2024.104036","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5090099496","display_name":"Lingbo Liu","orcid":"https://orcid.org/0000-0002-9876-8506"},"institutions":[{"id":"https://openalex.org/I4210167432","display_name":"Center for Policy Analysis","ror":"https://ror.org/05tew9254","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I4210167432"]},{"id":"https://openalex.org/I37461747","display_name":"Wuhan University","ror":"https://ror.org/033vjfk17","country_code":"CN","type":"funder","lineage":["https://openalex.org/I37461747"]},{"id":"https://openalex.org/I136199984","display_name":"Harvard University","ror":"https://ror.org/03vek6s52","country_code":"US","type":"funder","lineage":["https://openalex.org/I136199984"]}],"countries":["CN","US"],"is_corresponding":true,"raw_author_name":"Lingbo Liu","raw_affiliation_strings":["Center for Geographic Analysis, Harvard University, Cambridge, MA 02138, USA","School of Urban Design, Wuhan University, Wuhan, Hubei 430072, China"],"affiliations":[{"raw_affiliation_string":"Center for Geographic Analysis, Harvard University, Cambridge, MA 02138, USA","institution_ids":["https://openalex.org/I4210167432","https://openalex.org/I136199984"]},{"raw_affiliation_string":"School of Urban Design, Wuhan University, Wuhan, Hubei 430072, China","institution_ids":["https://openalex.org/I37461747"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5090099496"],"corresponding_institution_ids":["https://openalex.org/I4210167432","https://openalex.org/I37461747","https://openalex.org/I136199984"],"apc_list":{"value":2250,"currency":"USD","value_usd":2250},"apc_paid":{"value":2250,"currency":"USD","value_usd":2250},"fwci":12.004,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":6,"citation_normalized_percentile":{"value":0.999885,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"132","issue":null,"first_page":"104036","last_page":"104036"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T14280","display_name":"Big Data Technologies and Applications","score":0.9638,"subfield":{"id":"https://openalex.org/subfields/1802","display_name":"Information Systems and Management"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T14280","display_name":"Big Data Technologies and Applications","score":0.9638,"subfield":{"id":"https://openalex.org/subfields/1802","display_name":"Information Systems and Management"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11986","display_name":"Scientific Computing and Data Management","score":0.9624,"subfield":{"id":"https://openalex.org/subfields/1802","display_name":"Information Systems and Management"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11490","display_name":"Hydrological Forecasting Using AI","score":0.9577,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/geomatics","display_name":"Geomatics","score":0.5480594},{"id":"https://openalex.org/keywords/ensemble-learning","display_name":"Ensemble Learning","score":0.45219383}],"concepts":[{"id":"https://openalex.org/C9770341","wikidata":"https://www.wikidata.org/wiki/Q1938983","display_name":"Geospatial analysis","level":2,"score":0.89764524},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.5914937},{"id":"https://openalex.org/C12780434","wikidata":"https://www.wikidata.org/wiki/Q619798","display_name":"Geomatics","level":2,"score":0.5480594},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.517313},{"id":"https://openalex.org/C45942800","wikidata":"https://www.wikidata.org/wiki/Q245652","display_name":"Ensemble learning","level":2,"score":0.45219383},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.40019503},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.38264912},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.38043028},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3636884}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.jag.2024.104036","pdf_url":null,"source":{"id":"https://openalex.org/S4210179989","display_name":"International Journal of Applied Earth Observation and Geoinformation","issn_l":"1569-8432","issn":["1569-8432","1872-826X"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2403.03328","pdf_url":"http://arxiv.org/pdf/2403.03328","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.jag.2024.104036","pdf_url":null,"source":{"id":"https://openalex.org/S4210179989","display_name":"International Journal of Applied Earth Observation and Geoinformation","issn_l":"1569-8432","issn":["1569-8432","1872-826X"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"1841403"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"52078390"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"51978535"}],"datasets":[],"versions":[],"referenced_works_count":41,"referenced_works":["https://openalex.org/W110918106","https://openalex.org/W1855899068","https://openalex.org/W1981375454","https://openalex.org/W2045066934","https://openalex.org/W2074685056","https://openalex.org/W2086094956","https://openalex.org/W2103438429","https://openalex.org/W2278579005","https://openalex.org/W2605147858","https://openalex.org/W2727061231","https://openalex.org/W2747207142","https://openalex.org/W2892463357","https://openalex.org/W2911964244","https://openalex.org/W2914874661","https://openalex.org/W2930389570","https://openalex.org/W2962862931","https://openalex.org/W2998570674","https://openalex.org/W3001859009","https://openalex.org/W3035845777","https://openalex.org/W3046985715","https://openalex.org/W3127361658","https://openalex.org/W3165822366","https://openalex.org/W3176813768","https://openalex.org/W3198553581","https://openalex.org/W3199307990","https://openalex.org/W3209986559","https://openalex.org/W3214340375","https://openalex.org/W4205764917","https://openalex.org/W4210622816","https://openalex.org/W4230451521","https://openalex.org/W4235683815","https://openalex.org/W4239859962","https://openalex.org/W4281708948","https://openalex.org/W4283077289","https://openalex.org/W4283788062","https://openalex.org/W4285043263","https://openalex.org/W4292198479","https://openalex.org/W4297372927","https://openalex.org/W4387187512","https://openalex.org/W4388974454","https://openalex.org/W4389474133"],"related_works":["https://openalex.org/W4376643315","https://openalex.org/W4324137541","https://openalex.org/W4285741730","https://openalex.org/W4285046548","https://openalex.org/W4243882046","https://openalex.org/W4233344468","https://openalex.org/W4231202457","https://openalex.org/W4210302090","https://openalex.org/W2900445707","https://openalex.org/W1191482210"],"abstract_inverted_index":{"Analyzing":[0],"spatially":[1],"varying":[2],"effects":[3],"is":[4,15,97,127,139],"pivotal":[5],"in":[6,28,166],"geographic":[7,168],"analysis.However,":[8],"accurately":[9],"capturing":[10],"and":[11,22,49,77,91,107,118,123,132,148,161,170],"interpreting":[12],"this":[13,112,125],"variability":[14],"challenging":[16],"due":[17],"to":[18,64,99,110,129,158,176],"the":[19,66,72,85,142,153],"increasing":[20],"complexity":[21],"non-linearity":[23],"of":[24,68,74,84,144,155],"geospatial":[25,75],"data.Recent":[26],"advancements":[27],"integrating":[29],"Geographically":[30],"Weighted":[31],"(GW)":[32],"models":[33],"with":[34,61,105,120],"artificial":[35],"intelligence":[36],"(AI)":[37],"methodologies":[38],"offer":[39],"novel":[40,174],"approaches.However,":[41],"these":[42],"methods":[43],"often":[44],"focus":[45],"on":[46,115],"single":[47],"algorithms":[48],"emphasize":[50],"prediction":[51],"over":[52],"interpretability.The":[53],"recent":[54],"GeoShapley":[55],"method":[56],"integrates":[57],"machine":[58],"learning":[59],"(ML)":[60],"Shapley":[62],"values":[63],"explain":[65],"contribution":[67],"geographical":[69,89],"features,":[70],"advancing":[71],"combination":[73],"ML":[76,108,150],"explainable":[78],"AI":[79],"(XAI).Yet,":[80],"it":[81],"lacks":[82],"exploration":[83],"nonlinear":[86],"interactions":[87],"between":[88],"features":[90],"explanatory":[92],"variables.Herein,":[93],"an":[94],"ensemble":[95],"framework":[96,126,164],"proposed":[98],"merge":[100],"local":[101],"spatial":[102,137,145,179],"weighting":[103,146],"scheme":[104],"XAI":[106],"technologies":[109],"bridge":[111],"gap.Through":[113],"tests":[114],"synthetic":[116],"datasets":[117],"comparisons":[119],"GWR,":[121],"MGWR,":[122],"GeoShapley,":[124],"verified":[128],"enhance":[130],"interpretability":[131],"predictive":[133],"accuracy":[134],"by":[135],"elucidating":[136],"variability.Reproducibility":[138],"explored":[140],"through":[141],"comparison":[143],"schemes":[147],"various":[149],"models,":[151],"emphasizing":[152],"necessity":[154],"model":[156,160],"reproducibility":[157],"address":[159],"parameter":[162],"uncertainty.This":[163],"works":[165],"both":[167],"regression":[169],"classification,":[171],"offering":[172],"a":[173],"approach":[175],"understanding":[177],"complex":[178],"phenomena.":[180]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4400674392","counts_by_year":[{"year":2025,"cited_by_count":3},{"year":2024,"cited_by_count":3}],"updated_date":"2025-04-22T03:02:23.185048","created_date":"2024-07-17"}