{"id":"https://openalex.org/W4309568672","doi":"https://doi.org/10.1016/j.jag.2022.103113","title":"MUSTFN: A spatiotemporal fusion method for multi-scale and multi-sensor remote sensing images based on a convolutional neural network","display_name":"MUSTFN: A spatiotemporal fusion method for multi-scale and multi-sensor remote sensing images based on a convolutional neural network","publication_year":2022,"publication_date":"2022-11-19","ids":{"openalex":"https://openalex.org/W4309568672","doi":"https://doi.org/10.1016/j.jag.2022.103113"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.jag.2022.103113","pdf_url":null,"source":{"id":"https://openalex.org/S4210179989","display_name":"International Journal of Applied Earth Observation and Geoinformation","issn_l":"1569-8432","issn":["1569-8432","1872-826X"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://doi.org/10.1016/j.jag.2022.103113","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5044463878","display_name":"Peng Qin","orcid":"https://orcid.org/0000-0002-5291-6518"},"institutions":[{"id":"https://openalex.org/I4391012567","display_name":"Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)","ror":"https://ror.org/03swgqh13","country_code":null,"type":"facility","lineage":["https://openalex.org/I4391012567"]},{"id":"https://openalex.org/I4210106122","display_name":"Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)","ror":"https://ror.org/00y7mag53","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210106122"]},{"id":"https://openalex.org/I157773358","display_name":"Sun Yat-sen University","ror":"https://ror.org/0064kty71","country_code":"CN","type":"funder","lineage":["https://openalex.org/I157773358"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Peng Qin","raw_affiliation_strings":["School of Geospatial Engineering and Science, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China"],"affiliations":[{"raw_affiliation_string":"School of Geospatial Engineering and Science, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China","institution_ids":["https://openalex.org/I4391012567","https://openalex.org/I4210106122","https://openalex.org/I157773358"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108116567","display_name":"Huabing Huang","orcid":"https://orcid.org/0000-0001-6253-8437"},"institutions":[{"id":"https://openalex.org/I4210106122","display_name":"Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)","ror":"https://ror.org/00y7mag53","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210106122"]},{"id":"https://openalex.org/I4391012567","display_name":"Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)","ror":"https://ror.org/03swgqh13","country_code":null,"type":"facility","lineage":["https://openalex.org/I4391012567"]},{"id":"https://openalex.org/I4210136793","display_name":"Peng Cheng Laboratory","ror":"https://ror.org/03qdqbt06","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210136793"]},{"id":"https://openalex.org/I4210096250","display_name":"Beijing Institute of Big Data Research","ror":"https://ror.org/00s1sz824","country_code":"CN","type":"facility","lineage":["https://openalex.org/I20231570","https://openalex.org/I37796252","https://openalex.org/I4210096250"]},{"id":"https://openalex.org/I157773358","display_name":"Sun Yat-sen University","ror":"https://ror.org/0064kty71","country_code":"CN","type":"funder","lineage":["https://openalex.org/I157773358"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Huabing Huang","raw_affiliation_strings":["International Research Center of Big Data for Sustainable Development Goals, Beijing, China","Peng Cheng Laboratory, Shenzhen 518066, China","School of Geospatial Engineering and Science, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China"],"affiliations":[{"raw_affiliation_string":"School of Geospatial Engineering and Science, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China","institution_ids":["https://openalex.org/I4210106122","https://openalex.org/I4391012567","https://openalex.org/I157773358"]},{"raw_affiliation_string":"Peng Cheng Laboratory, Shenzhen 518066, China","institution_ids":["https://openalex.org/I4210136793"]},{"raw_affiliation_string":"International Research Center of Big Data for Sustainable Development Goals, Beijing, China","institution_ids":["https://openalex.org/I4210096250"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066454670","display_name":"Hailong Tang","orcid":"https://orcid.org/0000-0001-9953-2581"},"institutions":[{"id":"https://openalex.org/I4210106122","display_name":"Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)","ror":"https://ror.org/00y7mag53","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210106122"]},{"id":"https://openalex.org/I4391012567","display_name":"Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)","ror":"https://ror.org/03swgqh13","country_code":null,"type":"facility","lineage":["https://openalex.org/I4391012567"]},{"id":"https://openalex.org/I157773358","display_name":"Sun Yat-sen University","ror":"https://ror.org/0064kty71","country_code":"CN","type":"funder","lineage":["https://openalex.org/I157773358"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hailong Tang","raw_affiliation_strings":["School of Geospatial Engineering and Science, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China"],"affiliations":[{"raw_affiliation_string":"School of Geospatial Engineering and Science, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China","institution_ids":["https://openalex.org/I4210106122","https://openalex.org/I4391012567","https://openalex.org/I157773358"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100440145","display_name":"Jie Wang","orcid":"https://orcid.org/0000-0002-9663-3165"},"institutions":[{"id":"https://openalex.org/I4210136793","display_name":"Peng Cheng Laboratory","ror":"https://ror.org/03qdqbt06","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210136793"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jie Wang","raw_affiliation_strings":["Peng Cheng Laboratory, Shenzhen 518066, China"],"affiliations":[{"raw_affiliation_string":"Peng Cheng Laboratory, Shenzhen 518066, China","institution_ids":["https://openalex.org/I4210136793"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100412256","display_name":"Chong Liu","orcid":"https://orcid.org/0000-0003-4662-1622"},"institutions":[{"id":"https://openalex.org/I4391012567","display_name":"Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)","ror":"https://ror.org/03swgqh13","country_code":null,"type":"facility","lineage":["https://openalex.org/I4391012567"]},{"id":"https://openalex.org/I4210106122","display_name":"Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)","ror":"https://ror.org/00y7mag53","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210106122"]},{"id":"https://openalex.org/I157773358","display_name":"Sun Yat-sen University","ror":"https://ror.org/0064kty71","country_code":"CN","type":"funder","lineage":["https://openalex.org/I157773358"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chong Liu","raw_affiliation_strings":["School of Geospatial Engineering and Science, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China"],"affiliations":[{"raw_affiliation_string":"School of Geospatial Engineering and Science, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China","institution_ids":["https://openalex.org/I4391012567","https://openalex.org/I4210106122","https://openalex.org/I157773358"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":5,"corresponding_author_ids":["https://openalex.org/A5108116567"],"corresponding_institution_ids":["https://openalex.org/I4210106122","https://openalex.org/I4391012567","https://openalex.org/I4210136793","https://openalex.org/I4210096250","https://openalex.org/I157773358"],"apc_list":{"value":2250,"currency":"USD","value_usd":2250},"apc_paid":{"value":2250,"currency":"USD","value_usd":2250},"fwci":2.171,"has_fulltext":false,"cited_by_count":15,"citation_normalized_percentile":{"value":0.811514,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"115","issue":null,"first_page":"103113","last_page":"103113"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10111","display_name":"Remote Sensing in Agriculture","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/2303","display_name":"Ecology"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/fuse","display_name":"Fuse (electrical)","score":0.66446483},{"id":"https://openalex.org/keywords/sensor-fusion","display_name":"Sensor Fusion","score":0.5210842}],"concepts":[{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.66684836},{"id":"https://openalex.org/C141353440","wikidata":"https://www.wikidata.org/wiki/Q182221","display_name":"Fuse (electrical)","level":2,"score":0.66446483},{"id":"https://openalex.org/C158525013","wikidata":"https://www.wikidata.org/wiki/Q2593739","display_name":"Fusion","level":2,"score":0.6533725},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6491741},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.616558},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.5362892},{"id":"https://openalex.org/C69744172","wikidata":"https://www.wikidata.org/wiki/Q860822","display_name":"Image fusion","level":3,"score":0.5245752},{"id":"https://openalex.org/C33954974","wikidata":"https://www.wikidata.org/wiki/Q486494","display_name":"Sensor fusion","level":2,"score":0.5210842},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5098099},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.48449585},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.46334893},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.35502398},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.28892988},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.2524222},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.09904468},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.08413482},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.jag.2022.103113","pdf_url":null,"source":{"id":"https://openalex.org/S4210179989","display_name":"International Journal of Applied Earth Observation and Geoinformation","issn_l":"1569-8432","issn":["1569-8432","1872-826X"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/f2f0b73f1613400ab8b70a8b7e779fe3","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.jag.2022.103113","pdf_url":null,"source":{"id":"https://openalex.org/S4210179989","display_name":"International Journal of Applied Earth Observation and Geoinformation","issn_l":"1569-8432","issn":["1569-8432","1872-826X"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/15","score":0.58,"display_name":"Life on land"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":67,"referenced_works":["https://openalex.org/W1237899552","https://openalex.org/W1655403841","https://openalex.org/W1963768209","https://openalex.org/W1969191175","https://openalex.org/W1970515153","https://openalex.org/W1978145340","https://openalex.org/W1980986928","https://openalex.org/W1982121855","https://openalex.org/W1984289242","https://openalex.org/W2001547114","https://openalex.org/W2014446298","https://openalex.org/W2031596845","https://openalex.org/W2044609898","https://openalex.org/W2056811372","https://openalex.org/W2082263501","https://openalex.org/W2088603520","https://openalex.org/W2090702492","https://openalex.org/W2200350976","https://openalex.org/W2234018419","https://openalex.org/W2295859130","https://openalex.org/W2333390289","https://openalex.org/W2470926071","https://openalex.org/W2480184802","https://openalex.org/W2496225726","https://openalex.org/W2514340250","https://openalex.org/W2531841959","https://openalex.org/W2554764988","https://openalex.org/W2605847660","https://openalex.org/W2767886251","https://openalex.org/W2793445582","https://openalex.org/W2801784656","https://openalex.org/W2896372433","https://openalex.org/W2897285410","https://openalex.org/W2900639982","https://openalex.org/W2902544852","https://openalex.org/W2909750297","https://openalex.org/W2963557263","https://openalex.org/W2981854972","https://openalex.org/W2986228804","https://openalex.org/W2991488782","https://openalex.org/W2993182755","https://openalex.org/W3003923526","https://openalex.org/W3011782621","https://openalex.org/W3038371767","https://openalex.org/W3038579873","https://openalex.org/W3041014620","https://openalex.org/W3041133507","https://openalex.org/W3045918052","https://openalex.org/W3046571487","https://openalex.org/W3047166575","https://openalex.org/W3088318080","https://openalex.org/W3096444413","https://openalex.org/W3096586204","https://openalex.org/W3103964896","https://openalex.org/W3131722103","https://openalex.org/W3134412929","https://openalex.org/W3161810785","https://openalex.org/W3179323839","https://openalex.org/W3203369691","https://openalex.org/W3210464403","https://openalex.org/W3211637358","https://openalex.org/W4214939759","https://openalex.org/W4220732734","https://openalex.org/W4220901468","https://openalex.org/W4224078680","https://openalex.org/W4224536765","https://openalex.org/W4281664695"],"related_works":["https://openalex.org/W4390606538","https://openalex.org/W4214649316","https://openalex.org/W2788731446","https://openalex.org/W2554790198","https://openalex.org/W2391745328","https://openalex.org/W2204403038","https://openalex.org/W2154495931","https://openalex.org/W2132659060","https://openalex.org/W2031992971","https://openalex.org/W1971268144"],"abstract_inverted_index":{"Spatiotemporal":[0,87,227,243],"data":[1],"fusion":[2,28,64,144,150,271],"is":[3,59,136,357],"a":[4,85,94,132,184,246,311],"commonly-used":[5,166],"and":[6,73,148,151,179,216,266,307,347],"well-proven":[7],"technique":[8],"to":[9,61,104,120,138,210,327],"enhance":[10],"the":[11,34,117,122,140,160,175,200,213,225,233,242,286,293,323,329],"application":[12],"potential":[13],"of":[14,124,142,199,273,280,295,299,325,350,355],"multi-source":[15],"remote":[16],"sensing":[17],"images.":[18,130,352],"However,":[19],"most":[20],"existing":[21],"methods":[22,65],"have":[23,43,51,74],"trouble":[24],"in":[25,66,173,282,331],"generating":[26],"quality":[27,275],"results":[29,272,321],"when":[30,301],"areas":[31,147],"covered":[32],"by":[33,111,155,206,212,224,232,241],"images":[35,42,106,158,178,182,254,306,309,346],"undergoes":[36],"rapid":[37,335],"land":[38,336],"cover":[39,337],"changes":[40,191,338],"or":[41],"substantial":[44],"registration":[45,126,260],"errors.":[46],"While":[47],"deep":[48],"learning":[49],"algorithms":[50],"demonstrated":[52,292],"their":[53],"capabilities":[54],"for":[55,253],"imagery":[56,77,143,332],"fusion,":[57,333],"it":[58],"challenging":[60],"apply":[62],"deep-learning-based":[63],"regions":[67],"that":[68,187],"experiences":[69],"persistent":[70],"cloud":[71],"covers":[72],"limited":[75,348],"cloud-free":[76,351],"observations.":[78],"To":[79],"address":[80,328],"these":[81],"challenges,":[82],"we":[83,291],"developed":[84],"Multi-scene":[86],"Fusion":[88,220,229,244],"Network":[89,97,238,249],"(MUSTFN)":[90],"algorithm":[91],"based":[92],"on":[93],"Convolutional":[95,236],"Neural":[96,237],"(CNN).":[98],"Our":[99],"approach":[100],"uses":[101,116],"multi-level":[102],"features":[103,119],"fuse":[105],"at":[107,255,285],"different":[108,129,256,259],"resolutions":[109,257],"acquired":[110],"multiple":[112],"sensors.":[113],"Furthermore,":[114],"MUSTFN":[115,170,207,269,296,326,356],"multi-scale":[118],"overcome":[121],"effects":[123],"geometric":[125,343],"errors":[127],"between":[128,339,345],"Additionally,":[131],"multi-constrained":[133],"loss":[134],"function":[135],"proposed":[137,169],"improve":[139],"accuracy":[141],"over":[145,183,310],"large":[146,190,312],"solve":[149],"gap-filling":[152],"problems":[153],"simultaneously":[154],"utilizing":[156],"cloud-contaminated":[157],"with":[159,164,258,276],"fine-tuning":[161],"method.":[162],"Compared":[163],"several":[165],"methods,":[167],"our":[168,320],"performs":[171],"better":[172],"fusing":[174,302],"30-m":[176],"Landsat-7":[177],"500-m":[180,267],"MODIS":[181,308],"small":[185],"area":[186],"has":[188],"undergone":[189],"(the":[192],"average":[193,278],"relative":[194],"Mean":[195],"Absolute":[196],"Errors":[197],"(rMAE)":[198],"first":[201,287],"four":[202,288],"bands":[203],"are":[204],"6.8%":[205],"as":[208],"compared":[209],"14.1%":[211],"Enhanced":[214],"Spatial":[215],"Temporal":[217],"Adaptive":[218],"Reflectance":[219],"Model":[221],"(ESTARFM),":[222],"12.8%":[223],"Flexible":[226],"Data":[228],"(FSDAF),":[230],"8.4%":[231],"Extended":[234],"Super-Resolution":[235],"(ESRCNN),":[239],"8.1%":[240],"Using":[245],"Generative":[247],"Adversarial":[248],"(STFGAN)).":[250],"In":[251],"particularly":[252],"accuracies":[261],"(e.g.,":[262],"16-m":[263],"Chinese":[264],"GaoFen-1":[265],"MODIS),":[268],"achieved":[270],"good":[274],"an":[277],"rMAE":[279,298],"9.3%":[281],"spectral":[283],"reflectance":[284],"bands.":[289],"Finally,":[290],"applicability":[294],"(average":[297],"9.18%)":[300],"long-term":[303],"Landsat-8":[304],"composite":[305],"region":[313],"(830":[314],"km":[315],"\u00d7":[316],"600":[317],"km).":[318],"Overall,":[319],"suggest":[322],"effectiveness":[324],"challenges":[330],"including":[334],"image":[340],"acquisition":[341],"dates,":[342],"misregistration":[344],"availabilities":[349],"The":[353],"program":[354],"freely":[358],"available":[359],"at:":[360],"https://github.com/qpyeah/MUSTFN.":[361]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4309568672","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":5}],"updated_date":"2025-04-22T22:15:57.882630","created_date":"2022-11-28"}