{"id":"https://openalex.org/W4383895606","doi":"https://doi.org/10.1016/j.ijar.2023.108980","title":"On a class of prior distributions that accounts for uncertainty in the data","display_name":"On a class of prior distributions that accounts for uncertainty in the data","publication_year":2023,"publication_date":"2023-07-11","ids":{"openalex":"https://openalex.org/W4383895606","doi":"https://doi.org/10.1016/j.ijar.2023.108980"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.ijar.2023.108980","pdf_url":null,"source":{"id":"https://openalex.org/S33368595","display_name":"International Journal of Approximate Reasoning","issn_l":"0888-613X","issn":["0888-613X","1873-4731"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://doi.org/10.1016/j.ijar.2023.108980","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5018112948","display_name":"Chaitanya Joshi","orcid":"https://orcid.org/0000-0002-2660-2865"},"institutions":[{"id":"https://openalex.org/I154130895","display_name":"University of Auckland","ror":"https://ror.org/03b94tp07","country_code":"NZ","type":"education","lineage":["https://openalex.org/I154130895"]}],"countries":["NZ"],"is_corresponding":true,"raw_author_name":"Chaitanya Joshi","raw_affiliation_strings":["Department of Statistics, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand","institution_ids":["https://openalex.org/I154130895"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5043871498","display_name":"Fabrizio Ruggeri","orcid":"https://orcid.org/0000-0002-7655-6254"},"institutions":[{"id":"https://openalex.org/I4210137033","display_name":"Istituto di Matematica Applicata e Tecnologie Informatiche","ror":"https://ror.org/03m0n3c07","country_code":"IT","type":"education","lineage":["https://openalex.org/I4210137033","https://openalex.org/I4210155236"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Fabrizio Ruggeri","raw_affiliation_strings":["CNR-IMATI, Via Bassini, 15, Milano, 20133, Italy"],"affiliations":[{"raw_affiliation_string":"CNR-IMATI, Via Bassini, 15, Milano, 20133, Italy","institution_ids":["https://openalex.org/I4210137033"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5018112948"],"corresponding_institution_ids":["https://openalex.org/I154130895"],"apc_list":{"value":2960,"currency":"USD","value_usd":2960,"provenance":"doaj"},"apc_paid":{"value":2960,"currency":"USD","value_usd":2960,"provenance":"doaj"},"fwci":1.061,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.590864,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":78,"max":84},"biblio":{"volume":"161","issue":null,"first_page":"108980","last_page":"108980"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10968","display_name":"Statistical Distribution Estimation and Applications","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11443","display_name":"Advanced Statistical Process Monitoring","score":0.997,"subfield":{"id":"https://openalex.org/subfields/1804","display_name":"Statistics, Probability and Uncertainty"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/approximate-bayesian-computation","display_name":"Approximate Bayesian Computation","score":0.74286866}],"concepts":[{"id":"https://openalex.org/C2779377595","wikidata":"https://www.wikidata.org/wiki/Q21045424","display_name":"Approximate Bayesian computation","level":3,"score":0.74286866},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.72941214},{"id":"https://openalex.org/C21200559","wikidata":"https://www.wikidata.org/wiki/Q7451068","display_name":"Sensitivity (control systems)","level":2,"score":0.63776255},{"id":"https://openalex.org/C177769412","wikidata":"https://www.wikidata.org/wiki/Q278090","display_name":"Prior probability","level":3,"score":0.633127},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.5704262},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.548989},{"id":"https://openalex.org/C160234255","wikidata":"https://www.wikidata.org/wiki/Q812535","display_name":"Bayesian inference","level":3,"score":0.5240914},{"id":"https://openalex.org/C57830394","wikidata":"https://www.wikidata.org/wiki/Q278079","display_name":"Posterior probability","level":3,"score":0.516077},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.4903095},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4825853},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.47876564},{"id":"https://openalex.org/C89106044","wikidata":"https://www.wikidata.org/wiki/Q45284","display_name":"Likelihood function","level":3,"score":0.4605348},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.33833903},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.29878944},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.2570394},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.25591528},{"id":"https://openalex.org/C167928553","wikidata":"https://www.wikidata.org/wiki/Q1376021","display_name":"Estimation theory","level":2,"score":0.21176651},{"id":"https://openalex.org/C24326235","wikidata":"https://www.wikidata.org/wiki/Q126095","display_name":"Electronic engineering","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.ijar.2023.108980","pdf_url":null,"source":{"id":"https://openalex.org/S33368595","display_name":"International Journal of Approximate Reasoning","issn_l":"0888-613X","issn":["0888-613X","1873-4731"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.ijar.2023.108980","pdf_url":null,"source":{"id":"https://openalex.org/S33368595","display_name":"International Journal of Approximate Reasoning","issn_l":"0888-613X","issn":["0888-613X","1873-4731"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.46}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W1524239948","https://openalex.org/W1630188621","https://openalex.org/W1844548710","https://openalex.org/W1990004856","https://openalex.org/W1994431105","https://openalex.org/W2003541609","https://openalex.org/W2014503320","https://openalex.org/W2019499744","https://openalex.org/W2020494710","https://openalex.org/W2060072410","https://openalex.org/W2069806989","https://openalex.org/W2070010392","https://openalex.org/W2071152671","https://openalex.org/W2083196069","https://openalex.org/W2115312517","https://openalex.org/W2120112281","https://openalex.org/W2502089970","https://openalex.org/W2591957553","https://openalex.org/W2622039412","https://openalex.org/W2735958099","https://openalex.org/W2756253090","https://openalex.org/W2777598554","https://openalex.org/W2796532678","https://openalex.org/W2902681497","https://openalex.org/W2995737118","https://openalex.org/W3101617321","https://openalex.org/W4210427261","https://openalex.org/W4220843806","https://openalex.org/W4245777296"],"related_works":["https://openalex.org/W69468016","https://openalex.org/W4389708677","https://openalex.org/W4287868071","https://openalex.org/W3124172274","https://openalex.org/W3122206612","https://openalex.org/W3006565005","https://openalex.org/W2964314781","https://openalex.org/W2611832276","https://openalex.org/W2032616735","https://openalex.org/W2007093222"],"abstract_inverted_index":{"A":[0],"new":[1,120],"class":[2,27,47,98,121,128],"of":[3,14,45,122,129],"prior":[4,34,123,130],"distributions":[5,124],"that":[6],"can":[7,54,66],"be":[8,55,67],"used":[9],"to":[10,19,101,117,140],"assess":[11],"the":[12,15,22,37,42,49,63,96,102,106,119,126],"sensitivity":[13,64],"Bayesian":[16,108],"posterior":[17],"inference":[18],"uncertainty":[20],"in":[21,84],"data":[23],"is":[24,28,82,99],"proposed.":[25],"This":[26],"derived":[29],"starting":[30],"from":[31],"an":[32,80],"initial":[33],"distribution":[35],"and":[36,48,88],"likelihood":[38],"function.":[39],"We":[40,60,92],"establish":[41],"mathematical":[43],"properties":[44],"this":[46,58,113,141],"conditions":[50],"under":[51],"which":[52],"ordering":[53],"established":[56],"within":[57],"class.":[59],"show":[61],"how":[62,95],"analysis":[65],"performed":[68],"using":[69,90],"a":[70,85],"standard":[71],"MCMC":[72],"procedure":[73],"for":[74],"any":[75],"model":[76],"whose":[77],"likelihood,":[78],"or":[79],"approximation,":[81],"available":[83],"closed":[86],"form":[87],"illustrate":[89],"examples.":[91],"also":[93],"discuss":[94],"proposed":[97],"connected":[100],"main":[103],"ideas":[104],"behind":[105],"Approximate":[107],"Computation":[109],"(ABC)":[110],"method.":[111],"For":[112],"reason,":[114],"we":[115,133],"choose":[116],"call":[118],"as":[125],"ABC":[127],"distributions.":[131],"Finally,":[132],"close":[134],"by":[135],"sketching":[136],"further":[137],"possible":[138],"extensions":[139],"work.":[142]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4383895606","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-01-08T23:02:19.867427","created_date":"2023-07-12"}