{"id":"https://openalex.org/W4389210558","doi":"https://doi.org/10.1016/j.eswa.2023.122716","title":"MMAF-Net: Multi-view multi-stage adaptive fusion for multi-sensor 3D object detection","display_name":"MMAF-Net: Multi-view multi-stage adaptive fusion for multi-sensor 3D object detection","publication_year":2023,"publication_date":"2023-11-30","ids":{"openalex":"https://openalex.org/W4389210558","doi":"https://doi.org/10.1016/j.eswa.2023.122716"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.eswa.2023.122716","pdf_url":null,"source":{"id":"https://openalex.org/S13144211","display_name":"Expert Systems with Applications","issn_l":"0957-4174","issn":["0957-4174","1873-6793"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://doi.org/10.1016/j.eswa.2023.122716","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5028304511","display_name":"Wensheng Zhang","orcid":"https://orcid.org/0000-0002-5080-0714"},"institutions":[{"id":"https://openalex.org/I90090648","display_name":"Shijiazhuang Tiedao University","ror":"https://ror.org/022e9e065","country_code":"CN","type":"education","lineage":["https://openalex.org/I90090648"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wensheng Zhang","raw_affiliation_strings":["School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China"],"affiliations":[{"raw_affiliation_string":"School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China","institution_ids":["https://openalex.org/I90090648"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041177184","display_name":"Hongli Shi","orcid":"https://orcid.org/0000-0001-9338-109X"},"institutions":[{"id":"https://openalex.org/I90090648","display_name":"Shijiazhuang Tiedao University","ror":"https://ror.org/022e9e065","country_code":"CN","type":"education","lineage":["https://openalex.org/I90090648"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hongli Shi","raw_affiliation_strings":["School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China"],"affiliations":[{"raw_affiliation_string":"School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China","institution_ids":["https://openalex.org/I90090648"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011880326","display_name":"Yunche Zhao","orcid":null},"institutions":[{"id":"https://openalex.org/I90090648","display_name":"Shijiazhuang Tiedao University","ror":"https://ror.org/022e9e065","country_code":"CN","type":"education","lineage":["https://openalex.org/I90090648"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yunche Zhao","raw_affiliation_strings":["School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China"],"affiliations":[{"raw_affiliation_string":"School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China","institution_ids":["https://openalex.org/I90090648"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035991372","display_name":"Zhenan Feng","orcid":"https://orcid.org/0000-0001-7513-8942"},"institutions":[{"id":"https://openalex.org/I51158804","display_name":"Massey University","ror":"https://ror.org/052czxv31","country_code":"NZ","type":"education","lineage":["https://openalex.org/I51158804"]}],"countries":["NZ"],"is_corresponding":true,"raw_author_name":"Zhenan Feng","raw_affiliation_strings":["School of Built Environment, Massey University, Auckland 0632, New Zealand"],"affiliations":[{"raw_affiliation_string":"School of Built Environment, Massey University, Auckland 0632, New Zealand","institution_ids":["https://openalex.org/I51158804"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5065203284","display_name":"Ruggiero Lovreglio","orcid":"https://orcid.org/0000-0003-4596-7656"},"institutions":[{"id":"https://openalex.org/I51158804","display_name":"Massey University","ror":"https://ror.org/052czxv31","country_code":"NZ","type":"education","lineage":["https://openalex.org/I51158804"]}],"countries":["NZ"],"is_corresponding":false,"raw_author_name":"Ruggiero Lovreglio","raw_affiliation_strings":["School of Built Environment, Massey University, Auckland 0632, New Zealand"],"affiliations":[{"raw_affiliation_string":"School of Built Environment, Massey University, Auckland 0632, New Zealand","institution_ids":["https://openalex.org/I51158804"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5035991372"],"corresponding_institution_ids":["https://openalex.org/I51158804"],"apc_list":{"value":3220,"currency":"USD","value_usd":3220,"provenance":"doaj"},"apc_paid":{"value":3220,"currency":"USD","value_usd":3220,"provenance":"doaj"},"fwci":0.822,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.556134,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":85},"biblio":{"volume":"242","issue":null,"first_page":"122716","last_page":"122716"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12153","display_name":"Advanced Optical Sensing Technologies","score":0.9919,"subfield":{"id":"https://openalex.org/subfields/3105","display_name":"Instrumentation"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.526164},{"id":"https://openalex.org/keywords/sensor-fusion","display_name":"Sensor Fusion","score":0.50874025},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.45126206}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8430301},{"id":"https://openalex.org/C131979681","wikidata":"https://www.wikidata.org/wiki/Q1899648","display_name":"Point cloud","level":2,"score":0.7521987},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7001123},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.59398675},{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.526164},{"id":"https://openalex.org/C33954974","wikidata":"https://www.wikidata.org/wiki/Q486494","display_name":"Sensor fusion","level":2,"score":0.50874025},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.45986792},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.45126206},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.4382064},{"id":"https://openalex.org/C64543145","wikidata":"https://www.wikidata.org/wiki/Q162942","display_name":"Intersection (aeronautics)","level":2,"score":0.42388627},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.2854364},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.eswa.2023.122716","pdf_url":null,"source":{"id":"https://openalex.org/S13144211","display_name":"Expert Systems with Applications","issn_l":"0957-4174","issn":["0957-4174","1873-6793"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.eswa.2023.122716","pdf_url":null,"source":{"id":"https://openalex.org/S13144211","display_name":"Expert Systems with Applications","issn_l":"0957-4174","issn":["0957-4174","1873-6793"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W2088173505","https://openalex.org/W2184393491","https://openalex.org/W2186222003","https://openalex.org/W2244833639","https://openalex.org/W2339186457","https://openalex.org/W2539881804","https://openalex.org/W2610512230","https://openalex.org/W2897529137","https://openalex.org/W2911486422","https://openalex.org/W2913550731","https://openalex.org/W2953523865","https://openalex.org/W2963121255","https://openalex.org/W3176287975","https://openalex.org/W3201613623","https://openalex.org/W4224273618","https://openalex.org/W4224289557","https://openalex.org/W4244531973","https://openalex.org/W4246999471","https://openalex.org/W4247924304","https://openalex.org/W4248508312","https://openalex.org/W4255556797","https://openalex.org/W4285252188","https://openalex.org/W4286664370","https://openalex.org/W4298417552","https://openalex.org/W4316021899","https://openalex.org/W4320235691","https://openalex.org/W4400518895"],"related_works":["https://openalex.org/W4389574804","https://openalex.org/W4292672442","https://openalex.org/W3150655618","https://openalex.org/W3016928466","https://openalex.org/W2941610985","https://openalex.org/W2936725271","https://openalex.org/W2791431590","https://openalex.org/W2362101859","https://openalex.org/W2348909947","https://openalex.org/W2295788148"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3,121,130,152,177],"propose":[4,131],"a":[5,63,123,132,192],"3D":[6,90,189],"object":[7,91],"detection":[8,92,239],"method":[9,83],"called":[10],"MMAF-Net":[11,220],"that":[12,136,219,247],"is":[13,31],"based":[14,48,196],"on":[15,49,197,214],"the":[16,37,42,53,76,115,144,154,166,171,179,203,215,223,238],"multi-view":[17],"and":[18,25,52,107,111,190,199,207,236,243],"multi-stage":[19,64],"adaptive":[20],"fusion":[21,65,69,105,127],"of":[22,39,45,57,67,78,118,125,173,241],"RGB":[23,40],"images":[24],"LiDAR":[26],"point":[27,46,58,139],"cloud":[28,140],"data.":[29],"This":[30],"an":[32,161],"end-to-end":[33],"architecture,":[34],"which":[35],"combines":[36],"characteristics":[38],"images,":[41],"front":[43],"view":[44,56],"clouds":[47],"reflection":[50],"intensity,":[51],"bird's":[54],"eye":[55],"clouds.":[59],"It":[60],"also":[61],"adopts":[62],"approach":[66],"\"data-level":[68],"+":[70],"feature-level":[71],"fusion\"":[72],"to":[73,109,146,164,188,201],"fully":[74],"exploit":[75],"strength":[77],"multimodal":[79,102,119],"information.":[80],"Our":[81],"proposed":[82],"addresses":[84,222],"key":[85],"challenges":[86,224],"found":[87],"in":[88,168],"current":[89],"methods":[93],"for":[94],"autonomous":[95],"driving,":[96],"including":[97],"insufficient":[98],"feature":[99],"extraction":[100],"from":[101],"data,":[103],"rudimentary":[104],"techniques,":[106],"sensitivity":[108],"distance":[110],"occlusion.":[112],"To":[113],"ensure":[114],"comprehensive":[116],"integration":[117],"information,":[120],"present":[122],"series":[124],"targeted":[126],"methods.":[128],"Firstly,":[129],"novel":[133],"input":[134],"form":[135],"encodes":[137],"dense":[138],"reflectivity":[141],"information":[142],"into":[143],"image":[145],"enhance":[147],"its":[148],"representational":[149],"power.":[150],"Secondly,":[151],"design":[153],"Region":[155],"Attention":[156],"Adaptive":[157],"Fusion":[158],"module":[159],"utilizing":[160],"attention":[162],"mechanism":[163],"guide":[165],"network":[167],"adaptively":[169],"adjusting":[170],"importance":[172],"different":[174],"features.":[175],"Finally,":[176],"extend":[178],"2D":[180],"DIOU":[181],"(Distance":[182],"Intersection":[183],"over":[184],"Union)":[185],"loss":[186,195],"function":[187],"develop":[191],"joint":[193],"regression":[194],"3D_DIOU":[198],"SmoothL1":[200],"optimize":[202],"similarity":[204],"between":[205],"detected":[206],"ground":[208],"truth":[209],"boxes.":[210],"The":[211],"experimental":[212],"results":[213],"KITTI":[216],"dataset":[217],"demonstrate":[218],"effectively":[221],"posed":[225],"by":[226],"highly":[227],"obscured":[228],"or":[229],"crowded":[230],"scenes":[231],"while":[232],"maintaining":[233],"real-time":[234],"performance":[235],"improving":[237],"accuracy":[240],"smaller":[242],"more":[244],"difficult":[245],"objects":[246],"are":[248],"occluded":[249],"at":[250],"far":[251],"distances.":[252]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389210558","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2024-12-09T07:38:55.449435","created_date":"2023-12-01"}