{"id":"https://openalex.org/W3121763528","doi":"https://doi.org/10.1016/j.ejor.2016.03.033","title":"A model for clustering data from heterogeneous dissimilarities","display_name":"A model for clustering data from heterogeneous dissimilarities","publication_year":2016,"publication_date":"2016-03-27","ids":{"openalex":"https://openalex.org/W3121763528","doi":"https://doi.org/10.1016/j.ejor.2016.03.033","mag":"3121763528"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1016/j.ejor.2016.03.033","pdf_url":null,"source":{"id":"https://openalex.org/S103321696","display_name":"European Journal of Operational Research","issn_l":"0377-2217","issn":["0377-2217","1872-6860"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://repositorio.ufrn.br/bitstream/123456789/30633/1/ModelForClusteringData_2016.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5018790214","display_name":"\u00c9verton Santi","orcid":"https://orcid.org/0000-0003-1289-3339"},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"\u00c9verton Santi","raw_affiliation_strings":["School of Sciences and Technology, Universidade Federal do Rio Grande do Norte, Natal-RN 59072-970, Brazil"],"affiliations":[{"raw_affiliation_string":"School of Sciences and Technology, Universidade Federal do Rio Grande do Norte, Natal-RN 59072-970, Brazil","institution_ids":["https://openalex.org/I35046152"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038720756","display_name":"Daniel Aloise","orcid":"https://orcid.org/0000-0002-9876-2921"},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":true,"raw_author_name":"Daniel Aloise","raw_affiliation_strings":["Department of Computer Engineering and Automation, Universidade Federal do Rio Grande do Norte, Natal-RN 59072-970, Brazil"],"affiliations":[{"raw_affiliation_string":"Department of Computer Engineering and Automation, Universidade Federal do Rio Grande do Norte, Natal-RN 59072-970, Brazil","institution_ids":["https://openalex.org/I35046152"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5008381354","display_name":"Simon J. Blanchard","orcid":"https://orcid.org/0000-0002-1803-3543"},"institutions":[{"id":"https://openalex.org/I184565670","display_name":"Georgetown University","ror":"https://ror.org/05vzafd60","country_code":"US","type":"education","lineage":["https://openalex.org/I184565670"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Simon J. Blanchard","raw_affiliation_strings":["McDonough School of Business, Georgetown University, Washington, DC 20057, USA"],"affiliations":[{"raw_affiliation_string":"McDonough School of Business, Georgetown University, Washington, DC 20057, USA","institution_ids":["https://openalex.org/I184565670"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5038720756"],"corresponding_institution_ids":["https://openalex.org/I35046152"],"apc_list":{"value":3290,"currency":"USD","value_usd":3290,"provenance":"doaj"},"apc_paid":null,"fwci":3.203,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":23,"citation_normalized_percentile":{"value":0.950782,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":"253","issue":"3","first_page":"659","last_page":"672"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10637","display_name":"Data Clustering Techniques and Algorithms","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10637","display_name":"Data Clustering Techniques and Algorithms","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11106","display_name":"Trajectory Data Mining and Analysis","score":0.9858,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10064","display_name":"Statistical Mechanics of Complex Networks","score":0.975,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/clustering-algorithms","display_name":"Clustering Algorithms","score":0.625757},{"id":"https://openalex.org/keywords/density-based-clustering","display_name":"Density-based Clustering","score":0.614374},{"id":"https://openalex.org/keywords/document-clustering","display_name":"Document Clustering","score":0.610156},{"id":"https://openalex.org/keywords/stream-data-clustering","display_name":"Stream Data Clustering","score":0.600524},{"id":"https://openalex.org/keywords/fuzzy-clustering","display_name":"Fuzzy Clustering","score":0.593313},{"id":"https://openalex.org/keywords/single-linkage-clustering","display_name":"Single-linkage clustering","score":0.55513376},{"id":"https://openalex.org/keywords/consensus-clustering","display_name":"Consensus clustering","score":0.47783732}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.8687033},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.62250257},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.5769182},{"id":"https://openalex.org/C42812","wikidata":"https://www.wikidata.org/wiki/Q1082910","display_name":"Partition (number theory)","level":2,"score":0.57488966},{"id":"https://openalex.org/C4679612","wikidata":"https://www.wikidata.org/wiki/Q866298","display_name":"Aggregate (composite)","level":2,"score":0.56202793},{"id":"https://openalex.org/C22648726","wikidata":"https://www.wikidata.org/wiki/Q7523744","display_name":"Single-linkage clustering","level":5,"score":0.55513376},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5117047},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5099491},{"id":"https://openalex.org/C94641424","wikidata":"https://www.wikidata.org/wiki/Q5172845","display_name":"Correlation clustering","level":3,"score":0.50642836},{"id":"https://openalex.org/C186767784","wikidata":"https://www.wikidata.org/wiki/Q5162841","display_name":"Consensus clustering","level":5,"score":0.47783732},{"id":"https://openalex.org/C17212007","wikidata":"https://www.wikidata.org/wiki/Q5511111","display_name":"Fuzzy clustering","level":3,"score":0.4495007},{"id":"https://openalex.org/C66882249","wikidata":"https://www.wikidata.org/wiki/Q169336","display_name":"Homogeneous","level":2,"score":0.4178056},{"id":"https://openalex.org/C33704608","wikidata":"https://www.wikidata.org/wiki/Q5014717","display_name":"CURE data clustering algorithm","level":4,"score":0.40427065},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3447198},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.33433768},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.10218263},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1016/j.ejor.2016.03.033","pdf_url":null,"source":{"id":"https://openalex.org/S103321696","display_name":"European Journal of Operational Research","issn_l":"0377-2217","issn":["0377-2217","1872-6860"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://repositorio.ufrn.br/handle/123456789/30633","pdf_url":"https://repositorio.ufrn.br/bitstream/123456789/30633/1/ModelForClusteringData_2016.pdf","source":{"id":"https://openalex.org/S4306402641","display_name":"LA Referencia (Red Federada de Repositorios Institucionales de Publicaciones Cient\u00edficas)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4383465926","host_organization_name":"LA Referencia","host_organization_lineage":["https://openalex.org/I4383465926"],"host_organization_lineage_names":["LA Referencia"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://repositorio.ufrn.br/handle/123456789/30633","pdf_url":"https://repositorio.ufrn.br/bitstream/123456789/30633/1/ModelForClusteringData_2016.pdf","source":{"id":"https://openalex.org/S4306402641","display_name":"LA Referencia (Red Federada de Repositorios Institucionales de Publicaciones Cient\u00edficas)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4383465926","host_organization_name":"LA Referencia","host_organization_lineage":["https://openalex.org/I4383465926"],"host_organization_lineage_names":["LA Referencia"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":68,"referenced_works":["https://openalex.org/W112145047","https://openalex.org/W1530501119","https://openalex.org/W1548779692","https://openalex.org/W1591699350","https://openalex.org/W1891514524","https://openalex.org/W1966791291","https://openalex.org/W1969519932","https://openalex.org/W1977880816","https://openalex.org/W1979851869","https://openalex.org/W1982396960","https://openalex.org/W1986254541","https://openalex.org/W1987930127","https://openalex.org/W1988423736","https://openalex.org/W1992419399","https://openalex.org/W1998000647","https://openalex.org/W1998493104","https://openalex.org/W2001208895","https://openalex.org/W2001619934","https://openalex.org/W2001741445","https://openalex.org/W2004407575","https://openalex.org/W2010334716","https://openalex.org/W2010656511","https://openalex.org/W2013585593","https://openalex.org/W2019238791","https://openalex.org/W2022026988","https://openalex.org/W2026964350","https://openalex.org/W2027125675","https://openalex.org/W2027490156","https://openalex.org/W2029783501","https://openalex.org/W2031485519","https://openalex.org/W2043343585","https://openalex.org/W2044436985","https://openalex.org/W2049143039","https://openalex.org/W2064249866","https://openalex.org/W2066349366","https://openalex.org/W2069657950","https://openalex.org/W2073652000","https://openalex.org/W2075831560","https://openalex.org/W2076033371","https://openalex.org/W2084804872","https://openalex.org/W2095698670","https://openalex.org/W2107315862","https://openalex.org/W2112496246","https://openalex.org/W2114636210","https://openalex.org/W2127979111","https://openalex.org/W2148962857","https://openalex.org/W2150572822","https://openalex.org/W2150786646","https://openalex.org/W2153171506","https://openalex.org/W2153799334","https://openalex.org/W2157030448","https://openalex.org/W2165232124","https://openalex.org/W2165941569","https://openalex.org/W2168406421","https://openalex.org/W2171708509","https://openalex.org/W2323683043","https://openalex.org/W2327707012","https://openalex.org/W2332934751","https://openalex.org/W3124136977","https://openalex.org/W4230988165","https://openalex.org/W4232585008","https://openalex.org/W4233880351","https://openalex.org/W4235169531","https://openalex.org/W4243839976","https://openalex.org/W4245765974","https://openalex.org/W44187364","https://openalex.org/W608197444","https://openalex.org/W872784446"],"related_works":["https://openalex.org/W4308301473","https://openalex.org/W4298005308","https://openalex.org/W4241252752","https://openalex.org/W3209217468","https://openalex.org/W3140018618","https://openalex.org/W2599570117","https://openalex.org/W2406185607","https://openalex.org/W2389934482","https://openalex.org/W2374506950","https://openalex.org/W2067669858"],"abstract_inverted_index":{"Clustering":[0],"algorithms":[1],"partition":[2],"a":[3,37,98,120,126,138],"set":[4],"of":[5,52,89,115,155],"n":[6,39,41],"objects":[7,15,118],"into":[8],"p":[9],"groups":[10,20,114],"(called":[11],"clusters),":[12],"such":[13],"that":[14,84,159,166],"assigned":[16],"to":[17,24,60,62,69,102,131,143,153],"the":[18,31,53,75,86,90,104,160,167],"same":[19],"are":[21,180],"homogeneous":[22],"according":[23],"some":[25],"criteria.":[26],"To":[27],"derive":[28],"these":[29],"clusters,":[30],"data":[32],"input":[33],"required":[34],"is":[35,56,66,125,163,170],"often":[36],"single":[38],"\u00d7":[40],"dissimilarity":[42,54,109],"matrix.":[43],"Yet":[44],"for":[45,113,172,177],"many":[46],"applications,":[47],"more":[48],"than":[49],"one":[50],"instance":[51],"matrix":[55],"available":[57,108],"and":[58,111,129,134,149,165],"so":[59],"conform":[61],"model":[63,100,124,169],"requirements,":[64],"it":[65],"common":[67],"practice":[68,79],"aggregate":[70],"(e.g.,":[71],"sum":[72],"up,":[73],"average)":[74],"matrices.":[76],"This":[77],"aggregation":[78],"results":[80],"in":[81,119],"clustering":[82,99,117,178],"solutions":[83,145],"mask":[85],"true":[87],"nature":[88],"original":[91],"data.":[92,175],"In":[93],"this":[94],"paper":[95],"we":[96,135],"introduce":[97,137],"which,":[101],"handle":[103],"heterogeneity,":[105],"uses":[106],"all":[107],"matrices":[110],"identifies":[112],"individuals":[116],"similar":[121],"way.":[122],"The":[123],"nonconvex":[127],"problem":[128],"difficult":[130],"solve":[132],"exactly,":[133],"thus":[136],"Variable":[139],"Neighborhood":[140],"Search":[141],"heuristic":[142,161],"provide":[144],"efficiently.":[146],"Computational":[147],"experiments":[148],"an":[150],"empirical":[151],"application":[152],"perception":[154],"chocolate":[156],"candy":[157],"show":[158],"algorithm":[162],"efficient":[164],"proposed":[168],"suited":[171],"recovering":[173],"heterogeneous":[174],"Implications":[176],"researchers":[179],"discussed.":[181]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3121763528","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":5},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":2},{"year":2017,"cited_by_count":6},{"year":2016,"cited_by_count":2}],"updated_date":"2024-10-18T14:57:40.670459","created_date":"2021-02-01"}