{"id":"https://openalex.org/W4398146583","doi":"https://doi.org/10.1016/j.csda.2024.107990","title":"Gibbs sampler approach for objective Bayesian inference in elliptical multivariate meta-analysis random effects model","display_name":"Gibbs sampler approach for objective Bayesian inference in elliptical multivariate meta-analysis random effects model","publication_year":2024,"publication_date":"2024-05-20","ids":{"openalex":"https://openalex.org/W4398146583","doi":"https://doi.org/10.1016/j.csda.2024.107990"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.csda.2024.107990","pdf_url":null,"source":{"id":"https://openalex.org/S132362803","display_name":"Computational Statistics & Data Analysis","issn_l":"0167-9473","issn":["0167-9473","1872-7352"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://doi.org/10.1016/j.csda.2024.107990","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5032477641","display_name":"Olha Bodnar","orcid":"https://orcid.org/0000-0003-1359-3311"},"institutions":[{"id":"https://openalex.org/I26437253","display_name":"\u00d6rebro University","ror":"https://ror.org/05kytsw45","country_code":"SE","type":"funder","lineage":["https://openalex.org/I26437253"]},{"id":"https://openalex.org/I1321296531","display_name":"National Institute of Standards and Technology","ror":"https://ror.org/05xpvk416","country_code":"US","type":"government","lineage":["https://openalex.org/I1321296531","https://openalex.org/I1343035065"]}],"countries":["SE","US"],"is_corresponding":true,"raw_author_name":"Olha Bodnar","raw_affiliation_strings":["National Institute of Standards and Technology, Gaithersburg, MD 20899-8980, USA","Unit of Statistics, School of Business, \u00d6rebro University, SE-70182 \u00d6rebro, Sweden"],"affiliations":[{"raw_affiliation_string":"Unit of Statistics, School of Business, \u00d6rebro University, SE-70182 \u00d6rebro, Sweden","institution_ids":["https://openalex.org/I26437253"]},{"raw_affiliation_string":"National Institute of Standards and Technology, Gaithersburg, MD 20899-8980, USA","institution_ids":["https://openalex.org/I1321296531"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5019806834","display_name":"Taras Bodnar","orcid":"https://orcid.org/0000-0001-7855-8221"},"institutions":[{"id":"https://openalex.org/I161593684","display_name":"Stockholm University","ror":"https://ror.org/05f0yaq80","country_code":"SE","type":"funder","lineage":["https://openalex.org/I161593684"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Taras Bodnar","raw_affiliation_strings":["Department of Mathematics, Stockholm University, SE-10691 Stockholm, Sweden"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics, Stockholm University, SE-10691 Stockholm, Sweden","institution_ids":["https://openalex.org/I161593684"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5032477641"],"corresponding_institution_ids":["https://openalex.org/I26437253","https://openalex.org/I1321296531"],"apc_list":{"value":3340,"currency":"USD","value_usd":3340},"apc_paid":{"value":3340,"currency":"USD","value_usd":3340},"fwci":1.448,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.764955,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":88},"biblio":{"volume":"197","issue":null,"first_page":"107990","last_page":"107990"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9759,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9759,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10841","display_name":"Economic and Environmental Valuation","score":0.9571,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11918","display_name":"Forecasting Techniques and Applications","score":0.9417,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/gibbs-sampling","display_name":"Gibbs sampling","score":0.7210332}],"concepts":[{"id":"https://openalex.org/C158424031","wikidata":"https://www.wikidata.org/wiki/Q1191905","display_name":"Gibbs sampling","level":3,"score":0.7210332},{"id":"https://openalex.org/C168743327","wikidata":"https://www.wikidata.org/wiki/Q1826427","display_name":"Random effects model","level":3,"score":0.6907985},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.65477073},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.57043624},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.5689536},{"id":"https://openalex.org/C160234255","wikidata":"https://www.wikidata.org/wiki/Q812535","display_name":"Bayesian inference","level":3,"score":0.5268708},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.46719217},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.463869},{"id":"https://openalex.org/C95190672","wikidata":"https://www.wikidata.org/wiki/Q815382","display_name":"Meta-analysis","level":2,"score":0.46374875},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.42246997},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.39554408},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.28645942},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.24372539},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.09756893},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.093361676}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.csda.2024.107990","pdf_url":null,"source":{"id":"https://openalex.org/S132362803","display_name":"Computational Statistics & Data Analysis","issn_l":"0167-9473","issn":["0167-9473","1872-7352"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.csda.2024.107990","pdf_url":null,"source":{"id":"https://openalex.org/S132362803","display_name":"Computational Statistics & Data Analysis","issn_l":"0167-9473","issn":["0167-9473","1872-7352"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Good health and well-being","id":"https://metadata.un.org/sdg/3","score":0.83}],"grants":[{"funder":"https://openalex.org/F4320309421","funder_display_name":"International Union of Pure and Applied Chemistry","award_id":null},{"funder":"https://openalex.org/F4320321975","funder_display_name":"\u00d6rebro Universitet","award_id":"2019-024-1-200"},{"funder":"https://openalex.org/F4320332178","funder_display_name":"National Institute of Standards and Technology","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":55,"referenced_works":["https://openalex.org/W1613886042","https://openalex.org/W1643140812","https://openalex.org/W1857542727","https://openalex.org/W1910867164","https://openalex.org/W1938741793","https://openalex.org/W1970143170","https://openalex.org/W1981436989","https://openalex.org/W1989780448","https://openalex.org/W2001855995","https://openalex.org/W2006681603","https://openalex.org/W2006979162","https://openalex.org/W2018951460","https://openalex.org/W2021261393","https://openalex.org/W2022565791","https://openalex.org/W2037593179","https://openalex.org/W2047102900","https://openalex.org/W2064783429","https://openalex.org/W2068955696","https://openalex.org/W2070489918","https://openalex.org/W2072058533","https://openalex.org/W2084631652","https://openalex.org/W2088493534","https://openalex.org/W2088746366","https://openalex.org/W2099878672","https://openalex.org/W2112985617","https://openalex.org/W2120959053","https://openalex.org/W2144373793","https://openalex.org/W2145768101","https://openalex.org/W2160063906","https://openalex.org/W2162768498","https://openalex.org/W2168331993","https://openalex.org/W2544437330","https://openalex.org/W269863884","https://openalex.org/W2792493484","https://openalex.org/W2888732220","https://openalex.org/W2891332877","https://openalex.org/W2900494540","https://openalex.org/W2920804790","https://openalex.org/W2936210319","https://openalex.org/W2946265133","https://openalex.org/W2980684440","https://openalex.org/W3019236183","https://openalex.org/W3031396609","https://openalex.org/W3104856769","https://openalex.org/W3148198191","https://openalex.org/W3164971840","https://openalex.org/W3190482620","https://openalex.org/W3192986689","https://openalex.org/W4210300788","https://openalex.org/W4300579247","https://openalex.org/W4317207621","https://openalex.org/W4362230038","https://openalex.org/W4396827585","https://openalex.org/W4399513964","https://openalex.org/W4399588065"],"related_works":["https://openalex.org/W840335986","https://openalex.org/W4311691341","https://openalex.org/W3161345512","https://openalex.org/W3122927555","https://openalex.org/W27102384","https://openalex.org/W2494929626","https://openalex.org/W2133543800","https://openalex.org/W1990075812","https://openalex.org/W1517763961","https://openalex.org/W1501929113"],"abstract_inverted_index":{"Bayesian":[0,85],"inference":[1],"procedures":[2],"for":[3,42,101],"the":[4,7,15,23,29,35,46,55,65,72,90,96,106,124],"parameters":[5],"of":[6,17,92,98,133],"multivariate":[8,86],"random":[9],"effects":[10,108],"model":[11,36],"are":[12,32,81],"derived":[13,70],"under":[14],"assumption":[16],"an":[18,75],"elliptically":[19],"contoured":[20],"distribution":[21,48],"when":[22],"Berger":[24],"and":[25,28,111],"Bernardo":[26],"reference":[27],"Jeffreys":[30],"priors":[31],"assigned":[33],"to":[34,64,83,129],"parameters.":[37],"A":[38],"new":[39,60],"numerical":[40],"algorithm":[41],"drawing":[43],"samples":[44],"from":[45,123],"posterior":[47],"is":[49,52,62],"developed,":[50],"which":[51],"based":[53],"on":[54,95,109],"hybrid":[56],"Gibbs":[57],"sampler.":[58],"The":[59,79,103,115],"approach":[61],"compared":[63],"two":[66],"Metropolis-Hastings":[67],"algorithms":[68],"previously":[69],"in":[71],"literature":[73],"via":[74],"extensive":[76],"simulation":[77],"study.":[78],"findings":[80],"applied":[82],"a":[84,99],"meta-analysis,":[87],"conducted":[88],"using":[89],"results":[91,132],"ten":[93],"studies":[94],"effectiveness":[97],"treatment":[100,107],"hypertension.":[102],"analysis":[104],"investigates":[105],"systolic":[110],"diastolic":[112],"blood":[113],"pressure.":[114],"second":[116],"empirical":[117],"illustration":[118],"deals":[119],"with":[120],"measurement":[121,131],"data":[122],"CCAUV.V-K1":[125],"key":[126],"comparison,":[127],"aiming":[128],"compare":[130],"sinusoidal":[134],"linear":[135],"accelerometers":[136],"at":[137],"four":[138],"frequencies.":[139]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4398146583","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-22T17:04:37.182846","created_date":"2024-05-21"}