{"id":"https://openalex.org/W2564815312","doi":"https://doi.org/10.1016/j.csda.2018.01.001","title":"Optimal exact tests for multiple binary endpoints","display_name":"Optimal exact tests for multiple binary endpoints","publication_year":2018,"publication_date":"2018-01-12","ids":{"openalex":"https://openalex.org/W2564815312","doi":"https://doi.org/10.1016/j.csda.2018.01.001","mag":"2564815312"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.csda.2018.01.001","pdf_url":null,"source":{"id":"https://openalex.org/S132362803","display_name":"Computational Statistics & Data Analysis","issn_l":"0167-9473","issn":["0167-9473","1872-7352"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://doi.org/10.1016/j.csda.2018.01.001","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5025436509","display_name":"Robin Ristl","orcid":"https://orcid.org/0000-0002-4163-9236"},"institutions":[{"id":"https://openalex.org/I76134821","display_name":"Medical University of Vienna","ror":"https://ror.org/05n3x4p02","country_code":"AT","type":"funder","lineage":["https://openalex.org/I76134821"]}],"countries":["AT"],"is_corresponding":false,"raw_author_name":"Robin Ristl","raw_affiliation_strings":["Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria"],"affiliations":[{"raw_affiliation_string":"Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria","institution_ids":["https://openalex.org/I76134821"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045397534","display_name":"Dong Xi","orcid":"https://orcid.org/0000-0003-1482-234X"},"institutions":[{"id":"https://openalex.org/I4210117619","display_name":"Novartis (United States)","ror":"https://ror.org/028fhxy95","country_code":"US","type":"funder","lineage":["https://openalex.org/I1283582996","https://openalex.org/I4210117619"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dong Xi","raw_affiliation_strings":["Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA"],"affiliations":[{"raw_affiliation_string":"Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA","institution_ids":["https://openalex.org/I4210117619"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014324908","display_name":"Ekkehard Glimm","orcid":"https://orcid.org/0000-0003-3624-961X"},"institutions":[{"id":"https://openalex.org/I1283582996","display_name":"Novartis (Switzerland)","ror":"https://ror.org/02f9zrr09","country_code":"CH","type":"funder","lineage":["https://openalex.org/I1283582996"]}],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Ekkehard Glimm","raw_affiliation_strings":["Novartis Pharma AG, Basel, Switzerland"],"affiliations":[{"raw_affiliation_string":"Novartis Pharma AG, Basel, Switzerland","institution_ids":["https://openalex.org/I1283582996"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5011290739","display_name":"Martin Posch","orcid":"https://orcid.org/0000-0001-8499-8573"},"institutions":[{"id":"https://openalex.org/I76134821","display_name":"Medical University of Vienna","ror":"https://ror.org/05n3x4p02","country_code":"AT","type":"funder","lineage":["https://openalex.org/I76134821"]}],"countries":["AT"],"is_corresponding":true,"raw_author_name":"Martin Posch","raw_affiliation_strings":["Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria"],"affiliations":[{"raw_affiliation_string":"Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria","institution_ids":["https://openalex.org/I76134821"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5011290739"],"corresponding_institution_ids":["https://openalex.org/I76134821"],"apc_list":{"value":3340,"currency":"USD","value_usd":3340},"apc_paid":{"value":3340,"currency":"USD","value_usd":3340},"fwci":1.085,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":15,"citation_normalized_percentile":{"value":0.818166,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":"122","issue":null,"first_page":"1","last_page":"17"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11235","display_name":"Statistical Methods in Clinical Trials","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11235","display_name":"Statistical Methods in Clinical Trials","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11798","display_name":"Optimal Experimental Design Methods","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.994,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/multiple-comparisons-problem","display_name":"Multiple comparisons problem","score":0.6607425},{"id":"https://openalex.org/keywords/bonferroni-correction","display_name":"Bonferroni correction","score":0.6116987},{"id":"https://openalex.org/keywords/exact-statistics","display_name":"Exact statistics","score":0.4270236},{"id":"https://openalex.org/keywords/nuisance-parameter","display_name":"Nuisance parameter","score":0.41164178}],"concepts":[{"id":"https://openalex.org/C40696583","wikidata":"https://www.wikidata.org/wiki/Q989120","display_name":"Type I and type II errors","level":2,"score":0.7069999},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.68834424},{"id":"https://openalex.org/C183905921","wikidata":"https://www.wikidata.org/wiki/Q1038757","display_name":"Multiple comparisons problem","level":2,"score":0.6607425},{"id":"https://openalex.org/C127808970","wikidata":"https://www.wikidata.org/wiki/Q385989","display_name":"Bonferroni correction","level":2,"score":0.6116987},{"id":"https://openalex.org/C129848803","wikidata":"https://www.wikidata.org/wiki/Q2564360","display_name":"Sample size determination","level":2,"score":0.565848},{"id":"https://openalex.org/C87007009","wikidata":"https://www.wikidata.org/wiki/Q210832","display_name":"Statistical hypothesis testing","level":2,"score":0.5571376},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.4953386},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.4729961},{"id":"https://openalex.org/C191093355","wikidata":"https://www.wikidata.org/wiki/Q9250577","display_name":"Exact test","level":2,"score":0.46812335},{"id":"https://openalex.org/C48372109","wikidata":"https://www.wikidata.org/wiki/Q3913","display_name":"Binary number","level":2,"score":0.46670982},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4502187},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.44042155},{"id":"https://openalex.org/C6239989","wikidata":"https://www.wikidata.org/wiki/Q5419224","display_name":"Exact statistics","level":3,"score":0.4270236},{"id":"https://openalex.org/C194531419","wikidata":"https://www.wikidata.org/wiki/Q17104825","display_name":"Nuisance parameter","level":3,"score":0.41164178},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.10562065},{"id":"https://openalex.org/C94375191","wikidata":"https://www.wikidata.org/wiki/Q11205","display_name":"Arithmetic","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.csda.2018.01.001","pdf_url":null,"source":{"id":"https://openalex.org/S132362803","display_name":"Computational Statistics & Data Analysis","issn_l":"0167-9473","issn":["0167-9473","1872-7352"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1612.07561","pdf_url":"https://arxiv.org/pdf/1612.07561","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.1612.07561","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.csda.2018.01.001","pdf_url":null,"source":{"id":"https://openalex.org/S132362803","display_name":"Computational Statistics & Data Analysis","issn_l":"0167-9473","issn":["0167-9473","1872-7352"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W2564815312"],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1499399028","https://openalex.org/W1500725991","https://openalex.org/W1607872540","https://openalex.org/W1970920130","https://openalex.org/W1976289983","https://openalex.org/W1991523480","https://openalex.org/W1995051406","https://openalex.org/W2000931423","https://openalex.org/W2002374079","https://openalex.org/W2013215086","https://openalex.org/W2019381242","https://openalex.org/W2020561516","https://openalex.org/W2032915080","https://openalex.org/W2033314834","https://openalex.org/W2034986768","https://openalex.org/W2036703787","https://openalex.org/W2042732005","https://openalex.org/W2075525207","https://openalex.org/W2076971451","https://openalex.org/W2079711292","https://openalex.org/W2080448669","https://openalex.org/W2086224692","https://openalex.org/W2087651612","https://openalex.org/W2120148445","https://openalex.org/W2143156387","https://openalex.org/W2146301263","https://openalex.org/W2148257857","https://openalex.org/W2158814886","https://openalex.org/W2221383810","https://openalex.org/W2260938729","https://openalex.org/W2319408018","https://openalex.org/W2541820485","https://openalex.org/W2564815312","https://openalex.org/W2796349379","https://openalex.org/W2796856748","https://openalex.org/W2801040323","https://openalex.org/W2942504594","https://openalex.org/W3106097685","https://openalex.org/W4231114256","https://openalex.org/W4285719527","https://openalex.org/W4290305201","https://openalex.org/W4302063968"],"related_works":["https://openalex.org/W2399332997","https://openalex.org/W2158813953","https://openalex.org/W2148357625","https://openalex.org/W2106547200","https://openalex.org/W2101960548","https://openalex.org/W2075474943","https://openalex.org/W2045102201","https://openalex.org/W1976996698","https://openalex.org/W1967710610","https://openalex.org/W1920812317"],"abstract_inverted_index":{"In":[0],"confirmatory":[1],"clinical":[2,206],"trials":[3],"with":[4,165,196,204],"small":[5],"sample":[6],"sizes,":[7],"hypothesis":[8],"tests":[9,92,203],"based":[10,29,110],"on":[11,30,74,111,119],"asymptotic":[12],"distributions":[13],"are":[14,22,28,51,67,93],"often":[15],"not":[16],"valid":[17],"and":[18,34,114,199],"exact":[19,56,84],"non-parametric":[20],"procedures":[21,59,164],"applied":[23],"instead.":[24],"However,":[25],"the":[26,48,61,75,98,120,123,136,143,149,155,189,193,201],"latter":[27],"discrete":[31],"test":[32,80,125],"statistics":[33,81],"can":[35],"become":[36],"very":[37],"conservative,":[38],"even":[39],"more":[40,184],"so,":[41],"if":[42],"adjustments":[43],"for":[44,60,89,177],"multiple":[45,57,70,162],"testing":[46,58,157,163],"as":[47],"Bonferroni":[49],"correction":[50],"applied.":[52],"We":[53,186],"propose":[54,106,173],"improved":[55],"setting":[62],"where":[63],"two":[64],"parallel":[65],"groups":[66],"compared":[68],"in":[69,209],"binary":[71],"endpoints.":[72],"Based":[73],"joint":[76],"conditional":[77],"distribution":[78],"of":[79,82,101,135,192],"Fisher's":[83],"tests,":[85,180],"optimal":[86,124,179,202],"rejection":[87,103,146],"regions":[88],"intersection":[90],"hypotheses":[91],"constructed.":[94],"To":[95],"efficiently":[96],"search":[97],"large":[99],"space":[100],"possible":[102,145],"regions,":[104],"we":[105,159,172],"an":[107],"optimization":[108,113,121],"algorithm":[109,176],"constrained":[112],"integer":[115],"linear":[116],"programming.":[117],"Depending":[118],"objective,":[122],"yields":[126],"maximal":[127,133],"power":[128,191],"under":[129],"a":[130,174,205,210],"specific":[131],"alternative,":[132],"exhaustion":[134],"nominal":[137],"type":[138,150],"I":[139,151],"error":[140,152,168],"rate,":[141],"or":[142],"largest":[144],"region":[147],"controlling":[148],"rate.":[153],"Applying":[154],"closed":[156],"principle,":[158],"construct":[160],"optimized":[161,194],"strong":[166],"familywise":[167],"rate":[169],"control.":[170],"Furthermore,":[171],"greedy":[175],"nearly":[178],"which":[181],"is":[182],"computationally":[183],"efficient.":[185],"numerically":[187],"compare":[188],"unconditional":[190],"procedure":[195],"alternative":[197],"approaches":[198],"illustrate":[200],"trial":[207],"example":[208],"rare":[211],"disease.":[212]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2564815312","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":1},{"year":2019,"cited_by_count":2},{"year":2018,"cited_by_count":3},{"year":2017,"cited_by_count":1}],"updated_date":"2025-04-21T20:40:21.635925","created_date":"2017-01-06"}