{"id":"https://openalex.org/W4390618662","doi":"https://doi.org/10.1016/j.compbiomed.2024.107955","title":"CSSNet: Cascaded spatial shift network for multi-organ segmentation","display_name":"CSSNet: Cascaded spatial shift network for multi-organ segmentation","publication_year":2024,"publication_date":"2024-01-05","ids":{"openalex":"https://openalex.org/W4390618662","doi":"https://doi.org/10.1016/j.compbiomed.2024.107955","pmid":"https://pubmed.ncbi.nlm.nih.gov/38215618"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.compbiomed.2024.107955","pdf_url":null,"source":{"id":"https://openalex.org/S44278595","display_name":"Computers in Biology and Medicine","issn_l":"0010-4825","issn":["0010-4825","1879-0534"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://doi.org/10.1016/j.compbiomed.2024.107955","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5082878649","display_name":"Yeqin Shao","orcid":"https://orcid.org/0000-0001-7868-2767"},"institutions":[{"id":"https://openalex.org/I199305430","display_name":"Nantong University","ror":"https://ror.org/02afcvw97","country_code":"CN","type":"funder","lineage":["https://openalex.org/I199305430"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Yeqin Shao","raw_affiliation_strings":["School of Transportation, Nantong University, Jiangsu, 226019, China"],"affiliations":[{"raw_affiliation_string":"School of Transportation, Nantong University, Jiangsu, 226019, China","institution_ids":["https://openalex.org/I199305430"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076691807","display_name":"Kunyang Zhou","orcid":"https://orcid.org/0009-0003-1085-5571"},"institutions":[{"id":"https://openalex.org/I199305430","display_name":"Nantong University","ror":"https://ror.org/02afcvw97","country_code":"CN","type":"funder","lineage":["https://openalex.org/I199305430"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kunyang Zhou","raw_affiliation_strings":["School of Zhangjian, Nantong University, Jiangsu, 226019, China"],"affiliations":[{"raw_affiliation_string":"School of Zhangjian, Nantong University, Jiangsu, 226019, China","institution_ids":["https://openalex.org/I199305430"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5006447298","display_name":"Lichi Zhang","orcid":"https://orcid.org/0000-0003-4396-4566"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lichi Zhang","raw_affiliation_strings":["School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, 200240, China"],"affiliations":[{"raw_affiliation_string":"School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, 200240, China","institution_ids":["https://openalex.org/I183067930"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5082878649"],"corresponding_institution_ids":["https://openalex.org/I199305430"],"apc_list":{"value":2610,"currency":"USD","value_usd":2610},"apc_paid":{"value":2610,"currency":"USD","value_usd":2610},"fwci":8.458,"has_fulltext":false,"cited_by_count":6,"citation_normalized_percentile":{"value":0.99996,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"170","issue":null,"first_page":"107955","last_page":"107955"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12702","display_name":"Brain Tumor Detection and Classification","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.6150495},{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.6033016},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5682846}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8140973},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.709541},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.69335574},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.6150495},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6071294},{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.6033016},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5682846},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.4217495},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.41579577},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.38441873},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D007091","descriptor_name":"Image Processing, Computer-Assisted","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D008113","descriptor_name":"Liver Neoplasms","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016571","descriptor_name":"Neural Networks, Computer","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D012984","descriptor_name":"Software","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.compbiomed.2024.107955","pdf_url":null,"source":{"id":"https://openalex.org/S44278595","display_name":"Computers in Biology and Medicine","issn_l":"0010-4825","issn":["0010-4825","1879-0534"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/38215618","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.compbiomed.2024.107955","pdf_url":null,"source":{"id":"https://openalex.org/S44278595","display_name":"Computers in Biology and Medicine","issn_l":"0010-4825","issn":["0010-4825","1879-0534"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.7,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61671255"},{"funder":"https://openalex.org/F4320335777","funder_display_name":"National Key Research and Development Program of China","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W2289076519","https://openalex.org/W2612690371","https://openalex.org/W2888358068","https://openalex.org/W2896457183","https://openalex.org/W2910094941","https://openalex.org/W2928133111","https://openalex.org/W2964227007","https://openalex.org/W2991630443","https://openalex.org/W3030810865","https://openalex.org/W3043944662","https://openalex.org/W3094502228","https://openalex.org/W3101639073","https://openalex.org/W3111255625","https://openalex.org/W3111741353","https://openalex.org/W3162475669","https://openalex.org/W3163465952","https://openalex.org/W3175515048","https://openalex.org/W3176153963","https://openalex.org/W3183804933","https://openalex.org/W3189759539","https://openalex.org/W3194513480","https://openalex.org/W3199613405","https://openalex.org/W4226016322","https://openalex.org/W4252857494","https://openalex.org/W4289489408","https://openalex.org/W4296351008","https://openalex.org/W4308861013","https://openalex.org/W4311250821","https://openalex.org/W4313641702","https://openalex.org/W4376607691","https://openalex.org/W4385373953","https://openalex.org/W4386159716"],"related_works":["https://openalex.org/W4376166922","https://openalex.org/W4362597605","https://openalex.org/W4297676672","https://openalex.org/W4281702477","https://openalex.org/W3040691452","https://openalex.org/W3009056573","https://openalex.org/W2922073769","https://openalex.org/W2490526372","https://openalex.org/W1574414179","https://openalex.org/W1522196789"],"abstract_inverted_index":{"Multi-organ":[0],"segmentation":[1,147,168],"is":[2],"vital":[3],"for":[4,66,93,144],"clinical":[5],"diagnosis":[6],"and":[7,11,48,85,95,113,121,156,174],"treatment.":[8],"Although":[9],"CNN":[10],"its":[12],"extensions":[13],"are":[14],"popular":[15],"in":[16,89],"organ":[17],"segmentation,":[18],"they":[19],"suffer":[20],"from":[21],"the":[22,80,115,119,140,152],"local":[23],"receptive":[24,35],"field.":[25,36],"In":[26],"contrast,":[27],"MultiLayer-Perceptron-based":[28],"models":[29,40],"(e.g.,":[30],"MLP-Mixer)":[31],"have":[32],"a":[33,60,72,90,102,126,133],"global":[34],"However,":[37],"these":[38],"MLP-based":[39],"employ":[41,132],"fully":[42],"connected":[43],"layers":[44],"with":[45,110,171],"many":[46],"parameters":[47,84],"tend":[49],"to":[50,78,106,124,137],"overfit":[51],"on":[52,139,151],"sample-deficient":[53],"medical":[54],"image":[55],"datasets.":[56],"Therefore,":[57],"we":[58,70,100,131],"propose":[59,101],"Cascaded":[61],"Spatial":[62],"Shift":[63],"Network,":[64],"CSSNet,":[65],"multi-organ":[67,146],"segmentation.":[68],"Specifically,":[69],"design":[71],"novel":[73],"cascaded":[74,91],"spatial":[75,122],"shift":[76],"block":[77],"reduce":[79],"number":[81],"of":[82],"model":[83],"aggregate":[86,107],"feature":[87,97,103,128,142],"segments":[88],"way":[92],"efficient":[94],"effective":[96],"extraction.":[98],"Then,":[99],"refinement":[104],"network":[105],"multi-scale":[108,116],"features":[109,117],"location":[111],"information,":[112],"enhance":[114],"along":[118],"channel":[120],"axis":[123],"obtain":[125],"high-quality":[127],"map.":[129],"Finally,":[130],"self-attention-based":[134],"fusion":[135],"strategy":[136],"focus":[138],"discriminative":[141],"information":[143],"better":[145],"performance.":[148],"Experimental":[149],"results":[150],"Synapse":[153],"(multiply":[154],"organs)":[155],"LiTS":[157],"(liver":[158],"&":[159],"tumor)":[160],"datasets":[161],"demonstrate":[162],"that":[163],"our":[164],"CSSNet":[165],"achieves":[166],"promising":[167],"performance":[169],"compared":[170],"CNN,":[172],"MLP,":[173],"Transformer":[175],"models.":[176],"The":[177],"source":[178],"code":[179],"will":[180],"be":[181],"available":[182],"at":[183],"https://github.com/zkyseu/CSSNet.":[184]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390618662","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":4}],"updated_date":"2025-04-30T00:37:37.955127","created_date":"2024-01-07"}