{"id":"https://openalex.org/W4362531944","doi":"https://doi.org/10.1016/j.compbiomed.2023.106882","title":"Automatic segmentation of prostate cancer metastases in PSMA PET/CT images using deep neural networks with weighted batch-wise dice loss","display_name":"Automatic segmentation of prostate cancer metastases in PSMA PET/CT images using deep neural networks with weighted batch-wise dice loss","publication_year":2023,"publication_date":"2023-04-04","ids":{"openalex":"https://openalex.org/W4362531944","doi":"https://doi.org/10.1016/j.compbiomed.2023.106882","pmid":"https://pubmed.ncbi.nlm.nih.gov/37037147"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.compbiomed.2023.106882","pdf_url":null,"source":{"id":"https://openalex.org/S44278595","display_name":"Computers in Biology and Medicine","issn_l":"0010-4825","issn":["0010-4825","1879-0534"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://doi.org/10.1016/j.compbiomed.2023.106882","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5002366529","display_name":"Yixi Xu","orcid":"https://orcid.org/0000-0003-0397-8832"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":true,"raw_author_name":"Yixi Xu","raw_affiliation_strings":["Microsoft, Redmond, WA, USA"],"affiliations":[{"raw_affiliation_string":"Microsoft, Redmond, WA, USA","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062612986","display_name":"Ivan S. Klyuzhin","orcid":"https://orcid.org/0000-0003-0141-7628"},"institutions":[{"id":"https://openalex.org/I141945490","display_name":"University of British Columbia","ror":"https://ror.org/03rmrcq20","country_code":"CA","type":"education","lineage":["https://openalex.org/I141945490"]},{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["CA","US"],"is_corresponding":false,"raw_author_name":"Ivan Klyuzhin","raw_affiliation_strings":["Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada","Department of Radiology, University of British Columbia, Vancouver, BC, Canada","Microsoft, Redmond, WA, USA"],"affiliations":[{"raw_affiliation_string":"Department of Radiology, University of British Columbia, Vancouver, BC, Canada","institution_ids":["https://openalex.org/I141945490"]},{"raw_affiliation_string":"Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada","institution_ids":[]},{"raw_affiliation_string":"Microsoft, Redmond, WA, USA","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060184273","display_name":"Sara Harsini","orcid":"https://orcid.org/0000-0001-6196-6982"},"institutions":[],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Sara Harsini","raw_affiliation_strings":["BC Cancer, Vancouver, BC, Canada"],"affiliations":[{"raw_affiliation_string":"BC Cancer, Vancouver, BC, Canada","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101621929","display_name":"Anthony Ortiz","orcid":"https://orcid.org/0009-0001-5722-5273"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Anthony Ortiz","raw_affiliation_strings":["Microsoft, Redmond, WA, USA"],"affiliations":[{"raw_affiliation_string":"Microsoft, Redmond, WA, USA","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100415431","display_name":"Shun Zhang","orcid":"https://orcid.org/0000-0002-1679-6256"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Shun Zhang","raw_affiliation_strings":["Microsoft, Redmond, WA, USA"],"affiliations":[{"raw_affiliation_string":"Microsoft, Redmond, WA, USA","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040772609","display_name":"Fran\u00e7ois B\u00e9nard","orcid":"https://orcid.org/0000-0001-7995-3581"},"institutions":[],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Fran\u00e7ois B\u00e9nard","raw_affiliation_strings":["BC Cancer, Vancouver, BC, Canada"],"affiliations":[{"raw_affiliation_string":"BC Cancer, Vancouver, BC, Canada","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022013110","display_name":"Rahul Dodhia","orcid":"https://orcid.org/0000-0003-3812-3906"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Rahul Dodhia","raw_affiliation_strings":["Microsoft, Redmond, WA, USA"],"affiliations":[{"raw_affiliation_string":"Microsoft, Redmond, WA, USA","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077969822","display_name":"Carlos Uribe","orcid":null},"institutions":[{"id":"https://openalex.org/I141945490","display_name":"University of British Columbia","ror":"https://ror.org/03rmrcq20","country_code":"CA","type":"education","lineage":["https://openalex.org/I141945490"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Carlos F. Uribe","raw_affiliation_strings":["Department of Radiology, University of British Columbia, Vancouver, BC, Canada","Functional Imaging, BC Cancer, Vancouver, BC, Canada"],"affiliations":[{"raw_affiliation_string":"Department of Radiology, University of British Columbia, Vancouver, BC, Canada","institution_ids":["https://openalex.org/I141945490"]},{"raw_affiliation_string":"Functional Imaging, BC Cancer, Vancouver, BC, Canada","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021438906","display_name":"Arman Rahmim","orcid":"https://orcid.org/0000-0002-9980-2403"},"institutions":[{"id":"https://openalex.org/I141945490","display_name":"University of British Columbia","ror":"https://ror.org/03rmrcq20","country_code":"CA","type":"education","lineage":["https://openalex.org/I141945490"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Arman Rahmim","raw_affiliation_strings":["Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada","Department of Radiology, University of British Columbia, Vancouver, BC, Canada"],"affiliations":[{"raw_affiliation_string":"Department of Radiology, University of British Columbia, Vancouver, BC, Canada","institution_ids":["https://openalex.org/I141945490"]},{"raw_affiliation_string":"Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5025368433","display_name":"Juan Lavista Ferres","orcid":"https://orcid.org/0000-0002-9654-3178"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Juan Lavista Ferres","raw_affiliation_strings":["Microsoft, Redmond, WA, USA"],"affiliations":[{"raw_affiliation_string":"Microsoft, Redmond, WA, USA","institution_ids":["https://openalex.org/I1290206253"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5002366529"],"corresponding_institution_ids":["https://openalex.org/I1290206253"],"apc_list":{"value":2610,"currency":"USD","value_usd":2610,"provenance":"doaj"},"apc_paid":{"value":2610,"currency":"USD","value_usd":2610,"provenance":"doaj"},"fwci":9.259,"has_fulltext":false,"cited_by_count":17,"citation_normalized_percentile":{"value":0.999972,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"158","issue":null,"first_page":"106882","last_page":"106882"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10543","display_name":"Prostate Cancer Treatment and Research","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10543","display_name":"Prostate Cancer Treatment and Research","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11395","display_name":"Radiopharmaceutical Chemistry and Applications","score":0.9856,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9593,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/dice","display_name":"Dice","score":0.74934375},{"id":"https://openalex.org/keywords/s\u00f8rensen\u2013dice-coefficient","display_name":"S\u00f8rensen\u2013Dice coefficient","score":0.70444715}],"concepts":[{"id":"https://openalex.org/C22029948","wikidata":"https://www.wikidata.org/wiki/Q45089","display_name":"Dice","level":2,"score":0.74934375},{"id":"https://openalex.org/C2780192828","wikidata":"https://www.wikidata.org/wiki/Q181257","display_name":"Prostate cancer","level":3,"score":0.73107696},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7119191},{"id":"https://openalex.org/C163892561","wikidata":"https://www.wikidata.org/wiki/Q2613728","display_name":"S\u00f8rensen\u2013Dice coefficient","level":4,"score":0.70444715},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.67690736},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.6222482},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5468263},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.48789808},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.46258447},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.45825425},{"id":"https://openalex.org/C2776235491","wikidata":"https://www.wikidata.org/wiki/Q9625","display_name":"Prostate","level":3,"score":0.45349348},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4121052},{"id":"https://openalex.org/C2989005","wikidata":"https://www.wikidata.org/wiki/Q214963","display_name":"Nuclear medicine","level":1,"score":0.3725993},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.36259204},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.3504125},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.30337292},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.08100259},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08030468},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[{"descriptor_ui":"D000072078","descriptor_name":"Positron Emission Tomography Computed Tomography","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D011471","descriptor_name":"Prostatic Neoplasms","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D008297","descriptor_name":"Male","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016571","descriptor_name":"Neural Networks, Computer","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D000072078","descriptor_name":"Positron Emission Tomography Computed Tomography","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":false},{"descriptor_ui":"D011471","descriptor_name":"Prostatic Neoplasms","qualifier_ui":"Q000000981","qualifier_name":"diagnostic imaging","is_major_topic":false},{"descriptor_ui":"D019275","descriptor_name":"Radiopharmaceuticals","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.compbiomed.2023.106882","pdf_url":null,"source":{"id":"https://openalex.org/S44278595","display_name":"Computers in Biology and Medicine","issn_l":"0010-4825","issn":["0010-4825","1879-0534"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/37037147","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1016/j.compbiomed.2023.106882","pdf_url":null,"source":{"id":"https://openalex.org/S44278595","display_name":"Computers in Biology and Medicine","issn_l":"0010-4825","issn":["0010-4825","1879-0534"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Good health and well-being","id":"https://metadata.un.org/sdg/3","score":0.72}],"grants":[{"funder":"https://openalex.org/F4320307764","funder_display_name":"Microsoft","award_id":null},{"funder":"https://openalex.org/F4320322675","funder_display_name":"Mitacs","award_id":"IT18063"},{"funder":"https://openalex.org/F4320323180","funder_display_name":"University of British Columbia","award_id":null},{"funder":"https://openalex.org/F4320332161","funder_display_name":"National Institutes of Health","award_id":"137993"},{"funder":"https://openalex.org/F4320334506","funder_display_name":"Canadian Institutes of Health Research","award_id":"PJT-162216"}],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W2468071338","https://openalex.org/W2591849683","https://openalex.org/W2608054125","https://openalex.org/W2801867624","https://openalex.org/W2889650129","https://openalex.org/W2889917137","https://openalex.org/W2904332067","https://openalex.org/W2938206213","https://openalex.org/W2968430731","https://openalex.org/W2984398807","https://openalex.org/W2987171095","https://openalex.org/W3088226460","https://openalex.org/W3096454384","https://openalex.org/W3165803930","https://openalex.org/W3211835527","https://openalex.org/W4287225530","https://openalex.org/W4289085709"],"related_works":["https://openalex.org/W4402926319","https://openalex.org/W4391935352","https://openalex.org/W4389060404","https://openalex.org/W4286233748","https://openalex.org/W4254054209","https://openalex.org/W4200334192","https://openalex.org/W3012828488","https://openalex.org/W2973136608","https://openalex.org/W2952835238","https://openalex.org/W2157102420"],"abstract_inverted_index":{"Automatic":[0],"and":[1,21,42,113,128,141,193,213,230,250,279,310,380,386,404,435,448,453,515],"accurate":[2],"segmentation":[3,43,440],"of":[4,8,28,44,57,168,179,241,258,304,350,358,410,419,451,469,492,519],"lesions":[5,48,89,361,385,387,412,470,479,493,521],"in":[6,49,265,428,467],"images":[7,56,133,431],"metastatic":[9,45,60],"castration-resistant":[10],"prostate":[11,46,61,425],"cancer":[12,47,62,426],"has":[13],"the":[14,66,70,106,114,176,185,189,206,218,224,235,259,266,270,311,322,343,373,384,392,417,445,449,463,482,490,507,517],"potential":[15],"to":[16,32,87,152,162,234,300,308,315,347,416,476,481,525],"enable":[17],"personalized":[18],"radiopharmaceutical":[19],"therapy":[20],"advanced":[22],"treatment":[23],"response":[24],"monitoring.":[25],"The":[26,256,337,439],"aim":[27],"this":[29],"study":[30],"is":[31],"develop":[33],"a":[34,121,288,302,355],"convolutional":[35,81],"neural":[36,82,196,397],"networks-based":[37],"framework":[38],"for":[39,65,134,138,143,360,382],"fully-automated":[40],"detection":[41,116,186,207,226,271,356,468,491],"whole-body":[50,54],"PET/CT":[51,55,93,430],"images.":[52],"525":[53],"patients":[58],"with":[59,69,120,198,237,354,362,388,399,471,494],"were":[63,85,97,402],"available":[64],"study,":[67],"acquired":[68],"[18F]DCFPyL":[71],"radiotracer":[72],"that":[73,183,217,424,503],"targets":[74],"prostate-specific":[75],"membrane":[76],"antigen":[77],"(PSMA).":[78],"U-Net":[79],"(1)-based":[80],"networks":[83,197,398],"(CNNs)":[84],"trained":[86,98,194,326],"identify":[88],"on":[90,124,188,332,341,391,444,488],"paired":[91],"axial":[92,160,181,263],"slices.":[94,296],"Baseline":[95],"models":[96,328,464],"using":[99,205,329,437,458,510],"batch-wise":[100,109],"dice":[101,110],"loss,":[102],"as":[103,105],"well":[104],"proposed":[107,219],"weighted":[108],"loss":[111,221,313,460,501],"(wDice),":[112],"lesion":[115,125,225,508],"performance":[117,202,409,441],"was":[118,203,287,345,378,475],"quantified,":[119],"particular":[122],"emphasis":[123],"size,":[126,447],"intensity,":[127,446,509],"location.":[129],"We":[130,174,215,297],"used":[131],"418":[132],"model":[135,139,144,151,172,344],"training,":[136],"30":[137,190],"validation,":[140],"77":[142],"testing.":[145],"In":[146,371],"addition,":[147,372],"we":[148,325],"allowed":[149],"our":[150,317],"take":[153,504],"n":[154],"=":[155,244,248,253],"0,2,":[156],"\u2026,":[157],"12":[158],"neighboring":[159,180,262,295,305],"slices":[161,182,264,306],"examine":[163],"how":[164],"incorporating":[165],"greater":[166,368],"amounts":[167],"3D":[169],"context":[170],"influences":[171],"performance.":[173],"selected":[175],"optimal":[177],"number":[178,303,518],"maximized":[184],"rate":[187,272,357],"validation":[191],"images,":[192],"five":[195],"different":[199,334,400],"architectures.":[200],"Model":[201],"evaluated":[204],"rate,":[208,227],"Dice":[209],"similarity":[210],"coefficient":[211],"(DSC)":[212],"sensitivity.":[214],"found":[216],"wDice":[220,312],"significantly":[222],"improved":[223,456],"lesion-wise":[228,231,275,280,376],"DSC":[229,276,377],"sensitivity":[232,282],"compared":[233,415],"baseline,":[236],"corresponding":[238],"average":[239,374],"increases":[240],"0.07":[242],"(p-value":[243,247,252],"0.01),":[245,254],"0.03":[246],"0.01)":[249],"0.04":[251],"respectively.":[255],"inclusion":[257],"first":[260],"two":[261],"input":[267],"likewise":[268],"increased":[269],"by":[273,277,283,457,498,522],"0.17,":[274],"0.05,":[278],"mean":[281],"0.16.":[284],"However,":[285],"there":[286],"minimal":[289],"effect":[290],"from":[291,529],"including":[292],"more":[293],"distant":[294],"ultimately":[298],"chose":[299],"use":[301],"equal":[307],"2":[309],"function":[314],"train":[316],"final":[318],"model.":[319],"To":[320],"evaluate":[321],"model's":[323],"performance,":[324],"three":[327,333],"identical":[330],"hyperparameters":[331],"data":[335,512],"splits.":[336],"results":[338,422],"showed":[339],"that,":[340],"average,":[342],"able":[346],"detect":[348],"80%":[349],"all":[351,383],"testing":[352,393],"lesions,":[353,452],"93%":[359],"maximum":[363],"standardized":[364],"uptake":[365],"values":[366,497],"(SUVmax)":[367],"than":[369],"5.0.":[370],"median":[375],"0.51":[379],"0.60":[381],"SUVmax>5.0,":[389],"respectively,":[390],"set.":[394],"Four":[395],"additional":[396,511],"architectures":[401],"trained,":[403],"they":[405],"both":[406],"yielded":[407],"stronger":[408],"segmenting":[411],"whose":[413],"SUVmax>5.0":[414],"rest":[418],"lesions.":[420],"Our":[421],"demonstrate":[423],"metastases":[427],"PSMA":[429],"can":[432,454],"be":[433,455],"detected":[434],"segmented":[436],"CNNs.":[438],"strongly":[442],"depends":[443],"location":[450],"specialized":[459],"functions.":[461],"Specifically,":[462],"performed":[465],"best":[466],"SUVmax>5.0.":[472],"Another":[473],"challenge":[474],"accurately":[477],"segment":[478],"close":[480],"bladder.":[483],"Future":[484],"work":[485],"will":[486],"focus":[487],"improving":[489],"lower":[495],"SUV":[496],"designing":[499],"custom":[500],"functions":[502],"into":[505],"account":[506],"augmentation":[513],"techniques,":[514],"reducing":[516],"false":[520],"developing":[523],"methods":[524],"better":[526],"separate":[527],"signal":[528],"noise.":[530]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4362531944","counts_by_year":[{"year":2024,"cited_by_count":13},{"year":2023,"cited_by_count":4}],"updated_date":"2024-12-21T10:17:17.576783","created_date":"2023-04-06"}