{"id":"https://openalex.org/W4386865177","doi":"https://doi.org/10.1016/j.artint.2023.104014","title":"A k-additive Choquet integral-based approach to approximate the SHAP values for local interpretability in machine learning","display_name":"A k-additive Choquet integral-based approach to approximate the SHAP values for local interpretability in machine learning","publication_year":2023,"publication_date":"2023-09-19","ids":{"openalex":"https://openalex.org/W4386865177","doi":"https://doi.org/10.1016/j.artint.2023.104014"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1016/j.artint.2023.104014","pdf_url":null,"source":{"id":"https://openalex.org/S196139623","display_name":"Artificial Intelligence","issn_l":"0004-3702","issn":["0004-3702","1872-7921"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://hal.science/hal-04356808/document","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5040377739","display_name":"Guilherme Dean Pelegrina","orcid":"https://orcid.org/0000-0001-7301-6167"},"institutions":[{"id":"https://openalex.org/I181391015","display_name":"Universidade Estadual de Campinas (UNICAMP)","ror":"https://ror.org/04wffgt70","country_code":"BR","type":"education","lineage":["https://openalex.org/I181391015"]},{"id":"https://openalex.org/I51101395","display_name":"Universit\u00e9 Paris 1 Panth\u00e9on-Sorbonne","ror":"https://ror.org/002t25c44","country_code":"FR","type":"education","lineage":["https://openalex.org/I51101395"]},{"id":"https://openalex.org/I4210088826","display_name":"Centre d'\u00c9conomie de la Sorbonne","ror":"https://ror.org/006shqv80","country_code":"FR","type":"facility","lineage":["https://openalex.org/I11559806","https://openalex.org/I1294671590","https://openalex.org/I4210088826","https://openalex.org/I4210150854","https://openalex.org/I51101395"]}],"countries":["BR","FR"],"is_corresponding":true,"raw_author_name":"Guilherme Dean Pelegrina","raw_affiliation_strings":["Centre d'\u00c9conomie de la Sorbonne - Universit\u00e9 Paris I Panth\u00e9on-Sorbonne, Paris, France","School of Applied Sciences - University of Campinas, Limeira, Brazil"],"affiliations":[{"raw_affiliation_string":"School of Applied Sciences - University of Campinas, Limeira, Brazil","institution_ids":["https://openalex.org/I181391015"]},{"raw_affiliation_string":"Centre d'\u00c9conomie de la Sorbonne - Universit\u00e9 Paris I Panth\u00e9on-Sorbonne, Paris, France","institution_ids":["https://openalex.org/I51101395","https://openalex.org/I4210088826"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047456733","display_name":"Leonardo Tomazeli Duarte","orcid":"https://orcid.org/0000-0003-0290-0080"},"institutions":[{"id":"https://openalex.org/I181391015","display_name":"Universidade Estadual de Campinas (UNICAMP)","ror":"https://ror.org/04wffgt70","country_code":"BR","type":"education","lineage":["https://openalex.org/I181391015"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Leonardo Tomazeli Duarte","raw_affiliation_strings":["School of Applied Sciences - University of Campinas, Limeira, Brazil"],"affiliations":[{"raw_affiliation_string":"School of Applied Sciences - University of Campinas, Limeira, Brazil","institution_ids":["https://openalex.org/I181391015"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5034398981","display_name":"Michel Grabisch","orcid":"https://orcid.org/0000-0002-3283-1496"},"institutions":[{"id":"https://openalex.org/I51101395","display_name":"Universit\u00e9 Paris 1 Panth\u00e9on-Sorbonne","ror":"https://ror.org/002t25c44","country_code":"FR","type":"education","lineage":["https://openalex.org/I51101395"]},{"id":"https://openalex.org/I4210088826","display_name":"Centre d'\u00c9conomie de la Sorbonne","ror":"https://ror.org/006shqv80","country_code":"FR","type":"facility","lineage":["https://openalex.org/I11559806","https://openalex.org/I1294671590","https://openalex.org/I4210088826","https://openalex.org/I4210150854","https://openalex.org/I51101395"]},{"id":"https://openalex.org/I57995698","display_name":"Paris School of Economics","ror":"https://ror.org/01qtp1053","country_code":"FR","type":"education","lineage":["https://openalex.org/I1294671590","https://openalex.org/I142631665","https://openalex.org/I29607241","https://openalex.org/I4210088668","https://openalex.org/I4210145102","https://openalex.org/I51101395","https://openalex.org/I57995698","https://openalex.org/I90669466"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Michel Grabisch","raw_affiliation_strings":["Centre d'\u00c9conomie de la Sorbonne - Universit\u00e9 Paris I Panth\u00e9on-Sorbonne, Paris, France","Paris School of Economics - Universit\u00e9 Paris I Panth\u00e9on-Sorbonne, Paris, France"],"affiliations":[{"raw_affiliation_string":"Paris School of Economics - Universit\u00e9 Paris I Panth\u00e9on-Sorbonne, Paris, France","institution_ids":["https://openalex.org/I51101395","https://openalex.org/I57995698"]},{"raw_affiliation_string":"Centre d'\u00c9conomie de la Sorbonne - Universit\u00e9 Paris I Panth\u00e9on-Sorbonne, Paris, France","institution_ids":["https://openalex.org/I51101395","https://openalex.org/I4210088826"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":["https://openalex.org/A5040377739"],"corresponding_institution_ids":["https://openalex.org/I181391015","https://openalex.org/I51101395","https://openalex.org/I4210088826"],"apc_list":{"value":3670,"currency":"USD","value_usd":3670,"provenance":"doaj"},"apc_paid":null,"fwci":4.459,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":12,"citation_normalized_percentile":{"value":0.999978,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"325","issue":null,"first_page":"104014","last_page":"104014"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Learning and Inference in Bayesian Networks","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10050","display_name":"Multi-Criteria Decision Making","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/interpretability","display_name":"Interpretability","score":0.95820516},{"id":"https://openalex.org/keywords/shapley-value","display_name":"Shapley value","score":0.71242523},{"id":"https://openalex.org/keywords/choquet-integral","display_name":"Choquet integral","score":0.6215077},{"id":"https://openalex.org/keywords/machine-learning-interpretability","display_name":"Machine Learning Interpretability","score":0.620093},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.6131191},{"id":"https://openalex.org/keywords/interpretable-models","display_name":"Interpretable Models","score":0.610821},{"id":"https://openalex.org/keywords/model-interpretability","display_name":"Model Interpretability","score":0.594508},{"id":"https://openalex.org/keywords/structure-learning","display_name":"Structure Learning","score":0.552749},{"id":"https://openalex.org/keywords/probabilistic-learning","display_name":"Probabilistic Learning","score":0.528864},{"id":"https://openalex.org/keywords/strengths-and-weaknesses","display_name":"Strengths and weaknesses","score":0.43371654}],"concepts":[{"id":"https://openalex.org/C2781067378","wikidata":"https://www.wikidata.org/wiki/Q17027399","display_name":"Interpretability","level":2,"score":0.95820516},{"id":"https://openalex.org/C199022921","wikidata":"https://www.wikidata.org/wiki/Q240046","display_name":"Shapley value","level":3,"score":0.71242523},{"id":"https://openalex.org/C112799922","wikidata":"https://www.wikidata.org/wiki/Q5104911","display_name":"Choquet integral","level":3,"score":0.6215077},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.6131191},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.55419856},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.55214757},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.48450395},{"id":"https://openalex.org/C177142836","wikidata":"https://www.wikidata.org/wiki/Q44455","display_name":"Game theory","level":2,"score":0.43803453},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43389434},{"id":"https://openalex.org/C63882131","wikidata":"https://www.wikidata.org/wiki/Q17122954","display_name":"Strengths and weaknesses","level":2,"score":0.43371654},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.36825836},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3392453},{"id":"https://openalex.org/C144237770","wikidata":"https://www.wikidata.org/wiki/Q747534","display_name":"Mathematical economics","level":1,"score":0.22968367},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.21724153},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.09705269},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C58166","wikidata":"https://www.wikidata.org/wiki/Q224821","display_name":"Fuzzy logic","level":2,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1016/j.artint.2023.104014","pdf_url":null,"source":{"id":"https://openalex.org/S196139623","display_name":"Artificial Intelligence","issn_l":"0004-3702","issn":["0004-3702","1872-7921"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320990","host_organization_name":"Elsevier BV","host_organization_lineage":["https://openalex.org/P4310320990"],"host_organization_lineage_names":["Elsevier BV"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://hal.science/hal-04356808","pdf_url":"https://hal.science/hal-04356808/document","source":{"id":"https://openalex.org/S4306402512","display_name":"HAL (Le Centre pour la Communication Scientifique Directe)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1294671590","host_organization_name":"Centre National de la Recherche Scientifique","host_organization_lineage":["https://openalex.org/I1294671590"],"host_organization_lineage_names":["Centre National de la Recherche Scientifique"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://hal.science/hal-04356808/file/pelegrina-ai23.pdf","pdf_url":"https://hal.science/hal-04356808/file/pelegrina-ai23.pdf","source":{"id":"https://openalex.org/S4306402512","display_name":"HAL (Le Centre pour la Communication Scientifique Directe)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1294671590","host_organization_name":"Centre National de la Recherche Scientifique","host_organization_lineage":["https://openalex.org/I1294671590"],"host_organization_lineage_names":["Centre National de la Recherche Scientifique"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.02166","pdf_url":"https://arxiv.org/pdf/2211.02166","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://hal.science/hal-04356808","pdf_url":"https://hal.science/hal-04356808/document","source":{"id":"https://openalex.org/S4306402512","display_name":"HAL (Le Centre pour la Communication Scientifique Directe)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1294671590","host_organization_name":"Centre National de la Recherche Scientifique","host_organization_lineage":["https://openalex.org/I1294671590"],"host_organization_lineage_names":["Centre National de la Recherche Scientifique"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320320997","funder_display_name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado de S\u00e3o Paulo","award_id":"2020/10572-5"},{"funder":"https://openalex.org/F4320320997","funder_display_name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado de S\u00e3o Paulo","award_id":"2021/11086-0"},{"funder":"https://openalex.org/F4320320997","funder_display_name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado de S\u00e3o Paulo","award_id":"2020/09838-0"},{"funder":"https://openalex.org/F4320322025","funder_display_name":"Conselho Nacional de Desenvolvimento Cient\u00edfico e Tecnol\u00f3gico","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W1548533521","https://openalex.org/W2008818676","https://openalex.org/W2017449401","https://openalex.org/W2033810643","https://openalex.org/W2036234778","https://openalex.org/W2048697945","https://openalex.org/W2059558609","https://openalex.org/W2063978378","https://openalex.org/W2101234009","https://openalex.org/W2102099143","https://openalex.org/W2103459159","https://openalex.org/W2116660956","https://openalex.org/W2124466170","https://openalex.org/W2129888542","https://openalex.org/W2216946510","https://openalex.org/W2326239417","https://openalex.org/W2803881474","https://openalex.org/W2892741787","https://openalex.org/W2914874661","https://openalex.org/W2963095307","https://openalex.org/W2964303497","https://openalex.org/W2979925379","https://openalex.org/W2998024276","https://openalex.org/W2999615587","https://openalex.org/W3007590609","https://openalex.org/W3081125651","https://openalex.org/W3121562452","https://openalex.org/W3123056373","https://openalex.org/W3146613606","https://openalex.org/W4225632040","https://openalex.org/W4240044798","https://openalex.org/W4289455523"],"related_works":["https://openalex.org/W4402500706","https://openalex.org/W4400489929","https://openalex.org/W4308361263","https://openalex.org/W2905433371","https://openalex.org/W2120220542","https://openalex.org/W2013832345","https://openalex.org/W2006581498","https://openalex.org/W2004258443","https://openalex.org/W1998066849","https://openalex.org/W1894585900"],"abstract_inverted_index":{"Besides":[0],"accuracy,":[1],"recent":[2],"studies":[3],"on":[4,13,93,229],"machine":[5,24],"learning":[6,25],"models":[7,26],"have":[8],"been":[9],"addressing":[10],"the":[11,15,58,65,77,86,150,181,199,211,216,235],"question":[12],"how":[14],"obtained":[16,220],"results":[17,33,221],"can":[18,102],"be":[19,103],"interpreted.":[20],"Indeed,":[21],"while":[22],"complex":[23],"are":[27],"able":[28],"to":[29,45,74,136,186,197,209,233],"provide":[30,168],"very":[31,104],"good":[32],"in":[34,39,72,129,154],"terms":[35],"of":[36,57,80,83,97,172,201,231],"accuracy":[37],"even":[38],"challenging":[40],"applications,":[41],"it":[42,139],"is":[43,134],"difficult":[44,135],"interpret":[46],"them.":[47],"Aiming":[48],"at":[49],"providing":[50],"some":[51],"interpretability":[52,178],"for":[53,176],"such":[54,118,164],"models,":[55],"one":[56],"most":[59],"famous":[60],"methods,":[61],"called":[62,110],"SHAP,":[63],"borrows":[64],"Shapley":[66,188,191],"value":[67],"concept":[68,200],"from":[69,204],"game":[70,144,205],"theory":[71,145],"order":[73],"locally":[75],"explain":[76],"predicted":[78],"outcome":[79],"an":[81],"instance":[82],"interest.":[84],"As":[85],"SHAP":[87,112,217,236],"values":[88,119,189],"calculation":[89],"needs":[90,226],"previous":[91],"computations":[92,228],"all":[94],"possible":[95],"coalitions":[96,230],"attributes,":[98],"its":[99,132],"computational":[100,122,151,212],"cost":[101],"high.":[105],"Therefore,":[106,153],"a":[107,114,159,169,173],"SHAP-based":[108,174],"method":[109,175],"Kernel":[111,130],"adopts":[113],"strategy":[115],"that":[116,147,162,223],"approximates":[117],"with":[120],"less":[121,227],"effort.":[123],"However,":[124],"we":[125,157,167,195],"see":[126],"two":[127],"weaknesses":[128],"SHAP:":[131],"formulation":[133,171],"understand":[137],"and":[138,190],"does":[140],"not":[141],"consider":[142],"further":[143],"assumptions":[146],"could":[148],"reduce":[149,210],"cost.":[152],"this":[155],"paper,":[156],"propose":[158,196],"novel":[160],"approach":[161],"addresses":[163],"weaknesses.":[165],"Firstly,":[166],"straightforward":[170],"local":[177],"by":[179],"using":[180],"Choquet":[182],"integral,":[183],"which":[184,207],"leads":[185],"both":[187],"interaction":[192],"indices.":[193],"Thereafter,":[194],"adopt":[198],"k-additive":[202],"games":[203],"theory,":[206],"contributes":[208],"effort":[213],"when":[214],"estimating":[215],"values.":[218,237],"The":[219],"attest":[222],"our":[224],"proposal":[225],"attributes":[232],"approximate":[234]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386865177","counts_by_year":[{"year":2024,"cited_by_count":10},{"year":2023,"cited_by_count":1}],"updated_date":"2024-11-16T12:11:55.961129","created_date":"2023-09-20"}