{"id":"https://openalex.org/W4400086661","doi":"https://doi.org/10.1007/s44267-024-00049-8","title":"PrimitiveNet: decomposing the global constraints for referring segmentation","display_name":"PrimitiveNet: decomposing the global constraints for referring segmentation","publication_year":2024,"publication_date":"2024-06-27","ids":{"openalex":"https://openalex.org/W4400086661","doi":"https://doi.org/10.1007/s44267-024-00049-8"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s44267-024-00049-8","pdf_url":"https://link.springer.com/content/pdf/10.1007/s44267-024-00049-8.pdf","source":{"id":"https://openalex.org/S4387289164","display_name":"Visual Intelligence","issn_l":"2731-9008","issn":["2731-9008"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://link.springer.com/content/pdf/10.1007/s44267-024-00049-8.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100353167","display_name":"Chang Liu","orcid":"https://orcid.org/0000-0001-7832-4935"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Chang Liu","raw_affiliation_strings":["School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085533260","display_name":"Xudong Jiang","orcid":"https://orcid.org/0000-0002-9104-2315"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Xudong Jiang","raw_affiliation_strings":["School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5036631624","display_name":"Henghui Ding","orcid":"https://orcid.org/0000-0003-4868-6526"},"institutions":[{"id":"https://openalex.org/I24943067","display_name":"Fudan University","ror":"https://ror.org/013q1eq08","country_code":"CN","type":"education","lineage":["https://openalex.org/I24943067"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Henghui Ding","raw_affiliation_strings":["Institute of Big Data, Fudan University, Shanghai, 200433, China"],"affiliations":[{"raw_affiliation_string":"Institute of Big Data, Fudan University, Shanghai, 200433, China","institution_ids":["https://openalex.org/I24943067"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5036631624"],"corresponding_institution_ids":["https://openalex.org/I24943067"],"apc_list":null,"apc_paid":null,"fwci":12.121,"has_fulltext":false,"cited_by_count":8,"citation_normalized_percentile":{"value":0.999951,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":"2","issue":"1","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9911,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9903,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/expression","display_name":"Expression (computer science)","score":0.7439474}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.8271226},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79082215},{"id":"https://openalex.org/C90559484","wikidata":"https://www.wikidata.org/wiki/Q778379","display_name":"Expression (computer science)","level":2,"score":0.7439474},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.6425087},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.6294152},{"id":"https://openalex.org/C2780586882","wikidata":"https://www.wikidata.org/wiki/Q7520643","display_name":"Simple (philosophy)","level":2,"score":0.57120097},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5307572},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.52860874},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.44162223},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.39155543},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.34336364},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.32048103},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.10115492},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s44267-024-00049-8","pdf_url":"https://link.springer.com/content/pdf/10.1007/s44267-024-00049-8.pdf","source":{"id":"https://openalex.org/S4387289164","display_name":"Visual Intelligence","issn_l":"2731-9008","issn":["2731-9008"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s44267-024-00049-8","pdf_url":"https://link.springer.com/content/pdf/10.1007/s44267-024-00049-8.pdf","source":{"id":"https://openalex.org/S4387289164","display_name":"Visual Intelligence","issn_l":"2731-9008","issn":["2731-9008"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.54,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W2892181857","https://openalex.org/W2912083425","https://openalex.org/W2913668833","https://openalex.org/W2913954081","https://openalex.org/W2999725795","https://openalex.org/W3093025045","https://openalex.org/W3167191950","https://openalex.org/W3174965650","https://openalex.org/W4200394859","https://openalex.org/W4224988000","https://openalex.org/W4234552385","https://openalex.org/W4281738910","https://openalex.org/W4294770622","https://openalex.org/W4301409532","https://openalex.org/W4307504011","https://openalex.org/W4375843776","https://openalex.org/W4377711491","https://openalex.org/W4382603355","https://openalex.org/W4385809408","https://openalex.org/W4386590759"],"related_works":["https://openalex.org/W4300101996","https://openalex.org/W4253593777","https://openalex.org/W2951497643","https://openalex.org/W2382521049","https://openalex.org/W2338854850","https://openalex.org/W2184239527","https://openalex.org/W2165950148","https://openalex.org/W2144385241","https://openalex.org/W2142393343","https://openalex.org/W1585007175"],"abstract_inverted_index":{"Abstract":[0],"In":[1,57],"referring":[2,176],"segmentation,":[3],"modeling":[4],"the":[5,9,15,20,34,41,48,52,55,66,92,96,109,133,143,155,162,170],"complicated":[6,49],"constraints":[7,69],"in":[8,22,46],"multimodal":[10],"information":[11,21,128],"is":[12,100],"one":[13],"of":[14,33,73,164],"most":[16,32],"challenging":[17],"problems.":[18],"As":[19],"a":[23,62,71,79,115,121],"given":[24],"language":[25,110,134],"expression":[26],"and":[27,54,120,132,140,167],"image":[28,53],"becomes":[29],"increasingly":[30],"abundant,":[31],"current":[35,174],"one-stage":[36],"methods":[37,178],"that":[38,82,169],"directly":[39],"output":[40,97],"segmentation":[42,98,177],"mask":[43,81,99],"encounter":[44],"difficulties":[45],"understanding":[47],"relationships":[50],"between":[51],"expression.":[56,111],"this":[58],"work,":[59],"we":[60,113],"propose":[61,114],"PrimitiveNet":[63],"to":[64,108,126,153],"decompose":[65],"difficult":[67],"global":[68],"into":[70],"set":[72],"simple":[74,85],"primitives.":[75],"Each":[76],"primitive":[77,80,149],"produces":[78],"represents":[83],"only":[84],"semantic":[86],"meanings,":[87],"e.g.,":[88],"all":[89,130],"instances":[90],"from":[91],"same":[93],"category.":[94],"Then,":[95],"computed":[101],"by":[102],"selectively":[103],"combining":[104],"these":[105],"primitives":[106,131],"according":[107],"Furthermore,":[112],"cross-primitive":[116],"attention":[117,123],"(CPA)":[118],"module":[119,125],"language-primitive":[122],"(LPA)":[124],"exchange":[127],"among":[129],"expression,":[135],"respectively.":[136],"The":[137],"proposed":[138,171],"CPA":[139],"LPA":[141],"help":[142],"network":[144,172],"find":[145],"appropriate":[146],"weights":[147],"for":[148],"masks,":[150],"so":[151],"as":[152],"recover":[154],"target":[156],"object.":[157],"Extensive":[158],"experiments":[159],"have":[160],"proven":[161],"effectiveness":[163],"our":[165],"design":[166],"verified":[168],"outperforms":[173],"state-of-the-art":[175],"on":[179],"three":[180],"RefCOCO":[181],"datasets.":[182]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4400086661","counts_by_year":[{"year":2024,"cited_by_count":8}],"updated_date":"2025-01-05T19:49:37.222804","created_date":"2024-06-28"}