{"id":"https://openalex.org/W4281660807","doi":"https://doi.org/10.1007/s44163-022-00026-4","title":"Social media data analysis framework for disaster response","display_name":"Social media data analysis framework for disaster response","publication_year":2022,"publication_date":"2022-06-06","ids":{"openalex":"https://openalex.org/W4281660807","doi":"https://doi.org/10.1007/s44163-022-00026-4"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s44163-022-00026-4","pdf_url":"https://link.springer.com/content/pdf/10.1007/s44163-022-00026-4.pdf","source":{"id":"https://openalex.org/S4210220416","display_name":"Discover Artificial Intelligence","issn_l":"2731-0809","issn":["2731-0809"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319965","host_organization_name":"Springer Nature","host_organization_lineage":["https://openalex.org/P4310319965"],"host_organization_lineage_names":["Springer Nature"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://link.springer.com/content/pdf/10.1007/s44163-022-00026-4.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5076946581","display_name":"V\u00edctor Ponce-L\u00f3pez","orcid":"https://orcid.org/0000-0002-4662-5722"},"institutions":[{"id":"https://openalex.org/I1330665745","display_name":"Energy Institute","ror":"https://ror.org/03fgcf430","country_code":"GB","type":"other","lineage":["https://openalex.org/I1330665745"]},{"id":"https://openalex.org/I45129253","display_name":"University College London","ror":"https://ror.org/02jx3x895","country_code":"GB","type":"funder","lineage":["https://openalex.org/I124357947","https://openalex.org/I45129253"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"V\u00edctor Ponce-L\u00f3pez","raw_affiliation_strings":["UCL Energy Institute, University College London, London, UK"],"affiliations":[{"raw_affiliation_string":"UCL Energy Institute, University College London, London, UK","institution_ids":["https://openalex.org/I1330665745","https://openalex.org/I45129253"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5022594750","display_name":"Catalina Spataru","orcid":"https://orcid.org/0000-0003-3106-8035"},"institutions":[{"id":"https://openalex.org/I1330665745","display_name":"Energy Institute","ror":"https://ror.org/03fgcf430","country_code":"GB","type":"other","lineage":["https://openalex.org/I1330665745"]},{"id":"https://openalex.org/I45129253","display_name":"University College London","ror":"https://ror.org/02jx3x895","country_code":"GB","type":"funder","lineage":["https://openalex.org/I124357947","https://openalex.org/I45129253"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Catalina Spataru","raw_affiliation_strings":["UCL Energy Institute, University College London, London, UK"],"affiliations":[{"raw_affiliation_string":"UCL Energy Institute, University College London, London, UK","institution_ids":["https://openalex.org/I1330665745","https://openalex.org/I45129253"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":990,"currency":"EUR","value_usd":1067},"apc_paid":{"value":990,"currency":"EUR","value_usd":1067},"fwci":0.984,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":7,"citation_normalized_percentile":{"value":0.803304,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":86,"max":87},"biblio":{"volume":"2","issue":"1","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9862,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9862,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11121","display_name":"Public Relations and Crisis Communication","score":0.9844,"subfield":{"id":"https://openalex.org/subfields/3315","display_name":"Communication"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T13018","display_name":"Seismology and Earthquake Studies","score":0.9701,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6028197},{"id":"https://openalex.org/keywords/binary-classification","display_name":"Binary classification","score":0.5061769},{"id":"https://openalex.org/keywords/multiclass-classification","display_name":"Multiclass classification","score":0.42906186}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7239449},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6815585},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.63597786},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6028197},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.5616372},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.50926673},{"id":"https://openalex.org/C52001869","wikidata":"https://www.wikidata.org/wiki/Q812530","display_name":"Naive Bayes classifier","level":3,"score":0.50716066},{"id":"https://openalex.org/C66905080","wikidata":"https://www.wikidata.org/wiki/Q17005494","display_name":"Binary classification","level":3,"score":0.5061769},{"id":"https://openalex.org/C123860398","wikidata":"https://www.wikidata.org/wiki/Q6934605","display_name":"Multiclass classification","level":3,"score":0.42906186},{"id":"https://openalex.org/C48372109","wikidata":"https://www.wikidata.org/wiki/Q3913","display_name":"Binary number","level":2,"score":0.42694402},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.41245967},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.41069236},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3777027},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0811252},{"id":"https://openalex.org/C94375191","wikidata":"https://www.wikidata.org/wiki/Q11205","display_name":"Arithmetic","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s44163-022-00026-4","pdf_url":"https://link.springer.com/content/pdf/10.1007/s44163-022-00026-4.pdf","source":{"id":"https://openalex.org/S4210220416","display_name":"Discover Artificial Intelligence","issn_l":"2731-0809","issn":["2731-0809"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319965","host_organization_name":"Springer Nature","host_organization_lineage":["https://openalex.org/P4310319965"],"host_organization_lineage_names":["Springer Nature"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/6df02c872ff44d9e9452ca044979e857","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s44163-022-00026-4","pdf_url":"https://link.springer.com/content/pdf/10.1007/s44163-022-00026-4.pdf","source":{"id":"https://openalex.org/S4210220416","display_name":"Discover Artificial Intelligence","issn_l":"2731-0809","issn":["2731-0809"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319965","host_organization_name":"Springer Nature","host_organization_lineage":["https://openalex.org/P4310319965"],"host_organization_lineage_names":["Springer Nature"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.77,"display_name":"Climate action","id":"https://metadata.un.org/sdg/13"}],"grants":[{"funder":"https://openalex.org/F4320314731","funder_display_name":"UK Research and Innovation","award_id":"EP/V002945/1"}],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W17915310","https://openalex.org/W1970489432","https://openalex.org/W2089298720","https://openalex.org/W2110580990","https://openalex.org/W2110889607","https://openalex.org/W2232393131","https://openalex.org/W2250734828","https://openalex.org/W2294370754","https://openalex.org/W2898175534","https://openalex.org/W2923014074","https://openalex.org/W2962739339","https://openalex.org/W2979826702","https://openalex.org/W3037191812","https://openalex.org/W317950718","https://openalex.org/W36916380","https://openalex.org/W4213009331","https://openalex.org/W4246022755","https://openalex.org/W91443777"],"related_works":["https://openalex.org/W4393666307","https://openalex.org/W4393443811","https://openalex.org/W4379620016","https://openalex.org/W4367336074","https://openalex.org/W4367335949","https://openalex.org/W4224941037","https://openalex.org/W4200112873","https://openalex.org/W3210764983","https://openalex.org/W3154045278","https://openalex.org/W2955796858"],"abstract_inverted_index":{"Abstract":[0],"This":[1],"paper":[2],"presents":[3],"a":[4,109,145,165,180,192],"social":[5],"media":[6],"data":[7],"analysis":[8],"framework":[9],"applied":[10],"to":[11,116,185],"multiple":[12],"datasets.":[13,69],"The":[14,47,96,135],"method":[15,174,189],"developed":[16,100],"uses":[17],"machine":[18],"learning":[19,51,150,173],"classifiers,":[20],"where":[21],"filtering":[22],"binary":[23,136],"classifiers":[24,48],"based":[25,139],"on":[26,33,65,140],"deep":[27,60,149,172],"bidirectional":[28,61],"neural":[29,63],"networks":[30,64],"are":[31,121,130],"trained":[32],"benchmark":[34,87],"datasets":[35,88],"of":[36,50,73,85,93,111,161,177,182,194],"disaster":[37,67],"responses":[38],"for":[39,168],"earthquakes":[40],"and":[41,43,56,113,123,125,132,155,187,196],"floods":[42],"extreme":[44],"flood":[45],"events.":[46],"consist":[49],"from":[52],"discrete":[53],"handcrafted":[54],"features":[55],"fine-tuning":[57],"approaches":[58,99],"using":[59],"Transformer":[62],"these":[66],"response":[68],"With":[70],"the":[71,74,80,86,90,141,159,171],"development":[72],"multiclass":[75,97],"classification":[76,98,137],"approach,":[77],"we":[78],"compare":[79],"state-of-the-art":[81],"results":[82],"in":[83,101,158,175],"one":[84],"containing":[89],"largest":[91],"number":[92],"disaster-related":[94],"categories.":[95],"this":[102],"research":[103],"with":[104,148,170,179],"support":[105],"vector":[106],"machines":[107],"provide":[108],"precision":[110,147,181,193],"0.83":[112],"0.79":[114,131],"compared":[115,184],"Bernoulli":[117],"na\u00efve":[118,127],"Bayes,":[119,128],"which":[120,129,190],"0.59":[122],"0.76,":[124],"multinomial":[126],"0.91,":[133],"respectively.":[134,198],"methods":[138,151],"MDRM":[142],"dataset":[143,163],"show":[144,164],"higher":[146],"(DistilBERT)":[152],"than":[153],"BoW":[154,186],"TF-IDF,":[156],"while":[157],"case":[160],"UnifiedCEHMET":[162],"high":[166],"performance":[167],"accuracy":[169],"terms":[176],"severity,":[178],"0.92":[183],"TF-IDF":[188],"has":[191],"0.68":[195],"0.70,":[197]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4281660807","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1}],"updated_date":"2025-04-18T16:21:51.697779","created_date":"2022-06-13"}