{"id":"https://openalex.org/W2531554958","doi":"https://doi.org/10.1007/s41095-016-0061-5","title":"Weighted average integration of sparse representation and collaborative representation for robust face recognition","display_name":"Weighted average integration of sparse representation and collaborative representation for robust face recognition","publication_year":2016,"publication_date":"2016-10-14","ids":{"openalex":"https://openalex.org/W2531554958","doi":"https://doi.org/10.1007/s41095-016-0061-5","mag":"2531554958"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s41095-016-0061-5","pdf_url":"https://link.springer.com/content/pdf/10.1007%2Fs41095-016-0061-5.pdf","source":{"id":"https://openalex.org/S2487656537","display_name":"Computational Visual Media","issn_l":"2096-0433","issn":["2096-0433","2096-0662"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319965","host_organization_name":"Springer Nature","host_organization_lineage":["https://openalex.org/P4310319965"],"host_organization_lineage_names":["Springer Nature"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"diamond","oa_url":"https://link.springer.com/content/pdf/10.1007%2Fs41095-016-0061-5.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5052292368","display_name":"Shaoning Zeng","orcid":"https://orcid.org/0000-0002-4384-8787"},"institutions":[{"id":"https://openalex.org/I93477617","display_name":"Huizhou University","ror":"https://ror.org/03q3s7962","country_code":"CN","type":"education","lineage":["https://openalex.org/I93477617"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shaoning Zeng","raw_affiliation_strings":["Huizhou University, Guangdong, 516007, China"],"affiliations":[{"raw_affiliation_string":"Huizhou University, Guangdong, 516007, China","institution_ids":["https://openalex.org/I93477617"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101983445","display_name":"Xiong Yang","orcid":"https://orcid.org/0000-0001-5471-1295"},"institutions":[{"id":"https://openalex.org/I93477617","display_name":"Huizhou University","ror":"https://ror.org/03q3s7962","country_code":"CN","type":"education","lineage":["https://openalex.org/I93477617"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yang Xiong","raw_affiliation_strings":["Huizhou University, Guangdong, 516007, China"],"affiliations":[{"raw_affiliation_string":"Huizhou University, Guangdong, 516007, China","institution_ids":["https://openalex.org/I93477617"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":0,"currency":"USD","value_usd":0},"apc_paid":null,"fwci":0.855,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.60223,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":82},"biblio":{"volume":"2","issue":"4","first_page":"357","last_page":"365"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9889,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.69056785},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6201443},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.48226577},{"id":"https://openalex.org/keywords/standard-test-image","display_name":"Standard test image","score":0.43144172},{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.4119543}],"concepts":[{"id":"https://openalex.org/C124066611","wikidata":"https://www.wikidata.org/wiki/Q28684319","display_name":"Sparse approximation","level":2,"score":0.89957535},{"id":"https://openalex.org/C31510193","wikidata":"https://www.wikidata.org/wiki/Q1192553","display_name":"Facial recognition system","level":3,"score":0.7483126},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.711693},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.69056785},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.685887},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.65388745},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6201443},{"id":"https://openalex.org/C2779304628","wikidata":"https://www.wikidata.org/wiki/Q3503480","display_name":"Face (sociological concept)","level":2,"score":0.5919946},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.48226577},{"id":"https://openalex.org/C180462255","wikidata":"https://www.wikidata.org/wiki/Q3559736","display_name":"Standard test image","level":4,"score":0.43144172},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.42863813},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.4119543},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3577025},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.2202892},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s41095-016-0061-5","pdf_url":"https://link.springer.com/content/pdf/10.1007%2Fs41095-016-0061-5.pdf","source":{"id":"https://openalex.org/S2487656537","display_name":"Computational Visual Media","issn_l":"2096-0433","issn":["2096-0433","2096-0662"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319965","host_organization_name":"Springer Nature","host_organization_lineage":["https://openalex.org/P4310319965"],"host_organization_lineage_names":["Springer Nature"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s41095-016-0061-5","pdf_url":"https://link.springer.com/content/pdf/10.1007%2Fs41095-016-0061-5.pdf","source":{"id":"https://openalex.org/S2487656537","display_name":"Computational Visual Media","issn_l":"2096-0433","issn":["2096-0433","2096-0662"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319965","host_organization_name":"Springer Nature","host_organization_lineage":["https://openalex.org/P4310319965"],"host_organization_lineage_names":["Springer Nature"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W1143616857","https://openalex.org/W1529297639","https://openalex.org/W1672851775","https://openalex.org/W1808256548","https://openalex.org/W1904464160","https://openalex.org/W1971361074","https://openalex.org/W1982098307","https://openalex.org/W1993962865","https://openalex.org/W2015448944","https://openalex.org/W2027963563","https://openalex.org/W2032371232","https://openalex.org/W2041891835","https://openalex.org/W2049555395","https://openalex.org/W2052079879","https://openalex.org/W2070127246","https://openalex.org/W2082855665","https://openalex.org/W2092101233","https://openalex.org/W2097018403","https://openalex.org/W2100556411","https://openalex.org/W2108995755","https://openalex.org/W2113341759","https://openalex.org/W2113606819","https://openalex.org/W2116019577","https://openalex.org/W2121058967","https://openalex.org/W2129812935","https://openalex.org/W2130187411","https://openalex.org/W2132467081","https://openalex.org/W2134658556","https://openalex.org/W2138451337","https://openalex.org/W2141607429","https://openalex.org/W2144583419","https://openalex.org/W2161031293","https://openalex.org/W2161516371","https://openalex.org/W2288403115","https://openalex.org/W2473526392","https://openalex.org/W2963689635","https://openalex.org/W3046878781","https://openalex.org/W4234552385","https://openalex.org/W4301409532","https://openalex.org/W625476304"],"related_works":["https://openalex.org/W2909729028","https://openalex.org/W2792632245","https://openalex.org/W2781737458","https://openalex.org/W2606223503","https://openalex.org/W2389228292","https://openalex.org/W2371421737","https://openalex.org/W2146577386","https://openalex.org/W2120695397","https://openalex.org/W1973963881","https://openalex.org/W1580457994"],"abstract_inverted_index":{"Sparse":[0],"representation":[1,17,34,66,69,103],"is":[2,18,35],"a":[3,36,61,76,98,137],"significant":[4],"method":[5,38,78,95],"to":[6,29,51,79,86],"perform":[7],"image":[8,16,24,41],"classification":[9,132],"for":[10,22,39,90,114],"face":[11,92,120],"recognition.":[12,93],"Sparsity":[13],"of":[14,45,59,101],"the":[15,19,102],"key":[20],"factor":[21],"robust":[23,40,91],"classification.":[25,42,115],"As":[26],"an":[27],"improvement":[28,139],"sparse":[30,65,82,128],"representation-based":[31,131],"classification,":[32],"collaborative":[33,68,84,130],"newer":[37],"Training":[43],"samples":[44],"all":[46],"classes":[47],"collaboratively":[48],"contribute":[49],"together":[50],"represent":[52],"one":[53],"single":[54],"test":[55,62],"sample.":[56],"The":[57,94],"ways":[58],"representing":[60],"sample":[63],"in":[64,140],"and":[67,83,110,129],"are":[70],"very":[71],"different,":[72],"so":[73],"we":[74],"propose":[75],"novel":[77],"integrate":[80],"both":[81,127],"representations":[85],"provide":[87],"improved":[88],"results":[89],"first":[96],"computes":[97],"weighted":[99],"average":[100],"coefficients":[104],"obtained":[105],"from":[106],"two":[107],"conventional":[108],"algorithms,":[109,133],"then":[111],"uses":[112],"it":[113],"Experiments":[116],"on":[117],"several":[118],"benchmark":[119],"databases":[121],"show":[122],"that":[123],"our":[124],"algorithm":[125],"outperforms":[126],"providing":[134],"at":[135],"least":[136],"10%":[138],"recognition":[141],"accuracy.":[142]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2531554958","counts_by_year":[{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":3}],"updated_date":"2025-04-16T16:43:02.294207","created_date":"2016-10-21"}