{"id":"https://openalex.org/W4313480643","doi":"https://doi.org/10.1007/s41019-022-00203-6","title":"Multi-Model Fusion-Based Hierarchical Extraction for Chinese Epidemic Event","display_name":"Multi-Model Fusion-Based Hierarchical Extraction for Chinese Epidemic Event","publication_year":2023,"publication_date":"2023-01-02","ids":{"openalex":"https://openalex.org/W4313480643","doi":"https://doi.org/10.1007/s41019-022-00203-6","pmid":"https://pubmed.ncbi.nlm.nih.gov/36620528"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s41019-022-00203-6","pdf_url":"https://link.springer.com/content/pdf/10.1007/s41019-022-00203-6.pdf","source":{"id":"https://openalex.org/S2486411021","display_name":"Data Science and Engineering","issn_l":"2364-1541","issn":["2364-1541","2364-1185"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"diamond","oa_url":"https://link.springer.com/content/pdf/10.1007/s41019-022-00203-6.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5084081529","display_name":"Zenghua Liao","orcid":"https://orcid.org/0009-0002-3155-2353"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"education","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zenghua Liao","raw_affiliation_strings":["Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101014381","display_name":"Zongqiang Yang","orcid":null},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"education","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zongqiang Yang","raw_affiliation_strings":["Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010709877","display_name":"Peixin Huang","orcid":"https://orcid.org/0009-0005-5696-4735"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"education","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Peixin Huang","raw_affiliation_strings":["Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102940051","display_name":"Ning Pang","orcid":"https://orcid.org/0000-0002-9870-6751"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"education","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ning Pang","raw_affiliation_strings":["Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5014937762","display_name":"Xiang Zhao","orcid":"https://orcid.org/0000-0001-6339-0219"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"education","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiang Zhao","raw_affiliation_strings":["Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"Laboratory for Big Data and Decision, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":0,"currency":"USD","value_usd":0,"provenance":"doaj"},"apc_paid":null,"fwci":1.057,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":3,"citation_normalized_percentile":{"value":0.999976,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":84,"max":88},"biblio":{"volume":"8","issue":"1","first_page":"73","last_page":"83"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11819","display_name":"Data-Driven Disease Surveillance","score":0.9913,"subfield":{"id":"https://openalex.org/subfields/2713","display_name":"Epidemiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9658,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hierarchical-database-model","display_name":"Hierarchical database model","score":0.4162397}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.83040684},{"id":"https://openalex.org/C2779662365","wikidata":"https://www.wikidata.org/wiki/Q5416694","display_name":"Event (particle physics)","level":2,"score":0.60143423},{"id":"https://openalex.org/C4725764","wikidata":"https://www.wikidata.org/wiki/Q844704","display_name":"Extraction (chemistry)","level":2,"score":0.551948},{"id":"https://openalex.org/C158525013","wikidata":"https://www.wikidata.org/wiki/Q2593739","display_name":"Fusion","level":2,"score":0.45613438},{"id":"https://openalex.org/C144986985","wikidata":"https://www.wikidata.org/wiki/Q871236","display_name":"Hierarchical database model","level":2,"score":0.4162397},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4131992},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39049083},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s41019-022-00203-6","pdf_url":"https://link.springer.com/content/pdf/10.1007/s41019-022-00203-6.pdf","source":{"id":"https://openalex.org/S2486411021","display_name":"Data Science and Engineering","issn_l":"2364-1541","issn":["2364-1541","2364-1185"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807097","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/36620528","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s41019-022-00203-6","pdf_url":"https://link.springer.com/content/pdf/10.1007/s41019-022-00203-6.pdf","source":{"id":"https://openalex.org/S2486411021","display_name":"Data Science and Engineering","issn_l":"2364-1541","issn":["2364-1541","2364-1185"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Good health and well-being","score":0.87,"id":"https://metadata.un.org/sdg/3"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W2039331562","https://openalex.org/W2059387088","https://openalex.org/W2115864922","https://openalex.org/W2211728022","https://openalex.org/W2250999640","https://openalex.org/W2265846598","https://openalex.org/W2475245295","https://openalex.org/W2509893387","https://openalex.org/W2573602082","https://openalex.org/W2782437235","https://openalex.org/W2788525741","https://openalex.org/W2891553865","https://openalex.org/W2952437275","https://openalex.org/W2962835228","https://openalex.org/W2963777632","https://openalex.org/W2964201905","https://openalex.org/W2964206023","https://openalex.org/W2965250913","https://openalex.org/W2970684294","https://openalex.org/W2971148526","https://openalex.org/W2997200074","https://openalex.org/W3005444529","https://openalex.org/W3023943971","https://openalex.org/W3036779180","https://openalex.org/W3092043163","https://openalex.org/W3100306564","https://openalex.org/W3117435054","https://openalex.org/W3128867615","https://openalex.org/W3136398196","https://openalex.org/W3152019416","https://openalex.org/W3154818064","https://openalex.org/W3163774486","https://openalex.org/W3177494822","https://openalex.org/W3198534705","https://openalex.org/W4210391403","https://openalex.org/W4225985257","https://openalex.org/W4283318382"],"related_works":["https://openalex.org/W4210345652","https://openalex.org/W3205103124","https://openalex.org/W3148217948","https://openalex.org/W2967030268","https://openalex.org/W2530546662","https://openalex.org/W2377297411","https://openalex.org/W2375788636","https://openalex.org/W2185253430","https://openalex.org/W2099421762","https://openalex.org/W1984333081"],"abstract_inverted_index":{"In":[0,126],"recent":[1],"years,":[2],"Coronavirus":[3],"disease":[4],"2019":[5],"(COVID-19)":[6],"has":[7,179],"become":[8],"a":[9,101,114,130],"global":[10],"epidemic,":[11],"and":[12,20,70,94,160,182,194],"some":[13],"efforts":[14],"have":[15],"been":[16],"devoted":[17],"to":[18,134,199],"tracking":[19],"controlling":[21,41],"its":[22],"spread.":[23],"Extracting":[24],"structured":[25],"knowledge":[26],"from":[27],"involved":[28],"epidemic":[29,57,77,104,158],"case":[30,78],"reports":[31],"can":[32,155],"inform":[33],"the":[34,42,53,65,74,82,90,136,190,200],"surveillance":[35],"system,":[36],"which":[37,61],"is":[38,62],"important":[39],"for":[40],"spread":[43],"of":[44,55,67,76,84,138,141,202],"outbreaks.":[45],"Therefore,":[46],"in":[47,73],"this":[48,85,165],"paper,":[49],"we":[50,87,98,128],"focus":[51],"on":[52,148,164,171],"task":[54],"Chinese":[56,102],"event":[58,92,123],"extraction":[59,124],"(EE),":[60],"defined":[63],"as":[64],"detection":[66],"epidemic-related":[68,91],"events":[69,159],"corresponding":[71],"arguments":[72],"texts":[75],"reports.":[79],"To":[80],"facilitate":[81],"research":[83],"task,":[86],"first":[88],"define":[89],"types":[93],"argument":[95],"roles.":[96],"Then":[97],"manually":[99],"annotate":[100],"COVID-19":[103,107],"dataset,":[105],"named":[106,119],"Case":[108],"Report":[109],"(CCR).":[110],"We":[111],"also":[112,187],"propose":[113],"novel":[115],"hierarchical":[116,122,192],"EE":[117,143],"architecture,":[118],"multi-model":[120,131,195],"fusion-based":[121],"(MFHEE).":[125],"MFHEE,":[127],"introduce":[129],"fusion":[132,196],"strategy":[133,197],"tackle":[135],"issue":[137],"recognition":[139],"bias":[140],"previous":[142],"models.":[144],"The":[145,167,184],"experimental":[146],"results":[147,170],"CCR":[149],"dataset":[150],"show":[151,175,188],"that":[152,176,189],"our":[153,177,203],"method":[154,178],"effectively":[156],"extract":[157],"outperforms":[161],"other":[162,172],"baselines":[163],"dataset.":[166],"comparative":[168],"experiments":[169],"generic":[173],"datasets":[174],"good":[180],"scalability":[181],"portability.":[183],"ablation":[185],"studies":[186],"proposed":[191],"structure":[193],"contribute":[198],"precision":[201],"model.The":[204],"online":[205],"version":[206],"contains":[207],"supplementary":[208],"material":[209],"available":[210],"at":[211],"10.1007/s41019-022-00203-6.":[212]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4313480643","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2}],"updated_date":"2024-12-21T02:18:21.695880","created_date":"2023-01-06"}