{"id":"https://openalex.org/W2282909996","doi":"https://doi.org/10.1007/s13042-015-0469-8","title":"Determining appropriate approaches for using data in feature selection","display_name":"Determining appropriate approaches for using data in feature selection","publication_year":2015,"publication_date":"2015-12-22","ids":{"openalex":"https://openalex.org/W2282909996","doi":"https://doi.org/10.1007/s13042-015-0469-8","mag":"2282909996"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s13042-015-0469-8","pdf_url":"https://link.springer.com/content/pdf/10.1007%2Fs13042-015-0469-8.pdf","source":{"id":"https://openalex.org/S2764999920","display_name":"International Journal of Machine Learning and Cybernetics","issn_l":"1868-8071","issn":["1868-8071","1868-808X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://link.springer.com/content/pdf/10.1007%2Fs13042-015-0469-8.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5013132355","display_name":"Ghadah Aldehim","orcid":null},"institutions":[{"id":"https://openalex.org/I1118541","display_name":"University of East Anglia","ror":"https://ror.org/026k5mg93","country_code":"GB","type":"education","lineage":["https://openalex.org/I1118541"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Ghadah Aldehim","raw_affiliation_strings":["The School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK"],"affiliations":[{"raw_affiliation_string":"The School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK","institution_ids":["https://openalex.org/I1118541"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100655526","display_name":"Wenjia Wang","orcid":"https://orcid.org/0000-0001-9219-0494"},"institutions":[{"id":"https://openalex.org/I1118541","display_name":"University of East Anglia","ror":"https://ror.org/026k5mg93","country_code":"GB","type":"education","lineage":["https://openalex.org/I1118541"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Wenjia Wang","raw_affiliation_strings":["The School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK"],"affiliations":[{"raw_affiliation_string":"The School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK","institution_ids":["https://openalex.org/I1118541"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":2790,"currency":"EUR","value_usd":3590,"provenance":"doaj"},"apc_paid":{"value":2790,"currency":"EUR","value_usd":3590,"provenance":"doaj"},"fwci":1.011,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":33,"citation_normalized_percentile":{"value":0.772241,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":"8","issue":"3","first_page":"915","last_page":"928"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10885","display_name":"Gene expression and cancer classification","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10885","display_name":"Gene expression and cancer classification","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9953,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11975","display_name":"Evolutionary Algorithms and Applications","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6917235},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.605963},{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.48183882}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7178944},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.6947352},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6917235},{"id":"https://openalex.org/C43214815","wikidata":"https://www.wikidata.org/wiki/Q7310987","display_name":"Reliability (semiconductor)","level":3,"score":0.6324014},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.6098242},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.605963},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5616826},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.55930746},{"id":"https://openalex.org/C139502532","wikidata":"https://www.wikidata.org/wiki/Q1122090","display_name":"Computational intelligence","level":2,"score":0.5331499},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.49515334},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.48704627},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.482151},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.48183882},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.46563593},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.41470718},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s13042-015-0469-8","pdf_url":"https://link.springer.com/content/pdf/10.1007%2Fs13042-015-0469-8.pdf","source":{"id":"https://openalex.org/S2764999920","display_name":"International Journal of Machine Learning and Cybernetics","issn_l":"1868-8071","issn":["1868-8071","1868-808X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s13042-015-0469-8","pdf_url":"https://link.springer.com/content/pdf/10.1007%2Fs13042-015-0469-8.pdf","source":{"id":"https://openalex.org/S2764999920","display_name":"International Journal of Machine Learning and Cybernetics","issn_l":"1868-8071","issn":["1868-8071","1868-808X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W144440563","https://openalex.org/W1485545181","https://openalex.org/W1495061682","https://openalex.org/W1512098439","https://openalex.org/W1528580419","https://openalex.org/W1554646759","https://openalex.org/W1730693163","https://openalex.org/W1808644423","https://openalex.org/W2038894244","https://openalex.org/W2056168656","https://openalex.org/W2096081771","https://openalex.org/W2102831150","https://openalex.org/W2107956883","https://openalex.org/W2115002964","https://openalex.org/W2119387367","https://openalex.org/W2125055259","https://openalex.org/W2147169507","https://openalex.org/W2151502141","https://openalex.org/W2156571267","https://openalex.org/W2156647247","https://openalex.org/W2161919332","https://openalex.org/W2162162988","https://openalex.org/W2167101736","https://openalex.org/W2167191085","https://openalex.org/W2167561997","https://openalex.org/W2738642287","https://openalex.org/W4250664506","https://openalex.org/W4252684946","https://openalex.org/W4312960235","https://openalex.org/W4322574962"],"related_works":["https://openalex.org/W4293525103","https://openalex.org/W3200179079","https://openalex.org/W3163334550","https://openalex.org/W3014300295","https://openalex.org/W2965318499","https://openalex.org/W2734587838","https://openalex.org/W2599424341","https://openalex.org/W2546942002","https://openalex.org/W2374344280","https://openalex.org/W2345184372"],"abstract_inverted_index":{"Feature":[0],"selection":[1,51,55],"is":[2,101,117,175,188],"increasingly":[3],"important":[4],"in":[5,11,21,49,83,178],"data":[6,13,20,48,61],"analysis":[7],"and":[8,37,87,89,108,114,137,153,159,161],"machine":[9],"learning":[10],"big":[12],"era.":[14],"However,":[15],"how":[16],"to":[17,54,68,192],"use":[18],"the":[19,41,47,60,64,70,104,109,115,120,172,180,183,197],"feature":[22,50],"selection,":[23],"i.e.":[24],"using":[25,45,57],"either":[26],"ALL":[27],"or":[28],"PART":[29,173],"of":[30,44,59,85,124,150,156,166,185],"a":[31,35,147,186],"dataset,":[32],"has":[33],"become":[34],"serious":[36],"tricky":[38],"issue.":[39],"Whilst":[40],"conventional":[42],"practice":[43],"all":[46],"may":[52],"lead":[53,67],"bias,":[56],"part":[58],"may,":[62],"on":[63,132],"other":[65],"hand,":[66],"underestimating":[69],"relevant":[71,151],"features":[72,152,158],"under":[73],"some":[74],"conditions.":[75],"This":[76],"paper":[77],"investigates":[78],"these":[79],"two":[80],"strategies":[81],"systematically":[82],"terms":[84],"reliability":[86,100],"effectiveness,":[88],"then":[90],"determines":[91],"their":[92],"suitability":[93],"for":[94],"datasets":[95,136,143],"with":[96,146,163],"different":[97,164],"characteristics.":[98],"The":[99,126,141,168],"measured":[102,118],"by":[103,119],"Average":[105,111],"Tanimoto":[106,112],"Index":[107],"Inter-method":[110],"Index,":[113],"effectiveness":[116],"mean":[121],"generalisation":[122],"accuracy":[123],"classification.":[125],"computational":[127],"experiments":[128],"are":[129,144],"carried":[130],"out":[131],"ten":[133],"real-world":[134],"benchmark":[135],"fourteen":[138],"synthetic":[139,142],"datasets.":[140],"generated":[145],"pre-set":[148],"number":[149],"varied":[154],"numbers":[155],"irrelevant":[157],"instances,":[160],"added":[162],"levels":[165],"noise.":[167],"results":[169],"indicate":[170],"that":[171],"approach":[174],"more":[176],"effective":[177],"reducing":[179],"bias":[181],"when":[182],"size":[184,199],"dataset":[187,198],"small":[189],"but":[190],"starts":[191],"lose":[193],"its":[194],"advantage":[195],"as":[196],"increases.":[200]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2282909996","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":7},{"year":2019,"cited_by_count":4},{"year":2018,"cited_by_count":7},{"year":2017,"cited_by_count":1}],"updated_date":"2024-12-16T13:21:07.310660","created_date":"2016-06-24"}