{"id":"https://openalex.org/W3196433949","doi":"https://doi.org/10.1007/s10994-021-06067-7","title":"Large scale tensor regression using kernels and variational inference","display_name":"Large scale tensor regression using kernels and variational inference","publication_year":2021,"publication_date":"2021-11-09","ids":{"openalex":"https://openalex.org/W3196433949","doi":"https://doi.org/10.1007/s10994-021-06067-7","mag":"3196433949"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10994-021-06067-7","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10994-021-06067-7.pdf","source":{"id":"https://openalex.org/S62148650","display_name":"Machine Learning","issn_l":"0885-6125","issn":["0885-6125","1573-0565"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://link.springer.com/content/pdf/10.1007/s10994-021-06067-7.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5065715503","display_name":"Robert Hu","orcid":"https://orcid.org/0000-0001-8620-4618"},"institutions":[{"id":"https://openalex.org/I40120149","display_name":"University of Oxford","ror":"https://ror.org/052gg0110","country_code":"GB","type":"funder","lineage":["https://openalex.org/I40120149"]}],"countries":["GB"],"is_corresponding":true,"raw_author_name":"Robert Hu","raw_affiliation_strings":["Department of Statistics, University of Oxford, Oxford, UK"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, University of Oxford, Oxford, UK","institution_ids":["https://openalex.org/I40120149"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009428718","display_name":"Geoff K. Nicholls","orcid":"https://orcid.org/0000-0002-1595-9041"},"institutions":[{"id":"https://openalex.org/I40120149","display_name":"University of Oxford","ror":"https://ror.org/052gg0110","country_code":"GB","type":"funder","lineage":["https://openalex.org/I40120149"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Geoff K. Nicholls","raw_affiliation_strings":["Department of Statistics, University of Oxford, Oxford, UK"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, University of Oxford, Oxford, UK","institution_ids":["https://openalex.org/I40120149"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5040046354","display_name":"Dino Sejdinovi\u0107","orcid":"https://orcid.org/0000-0001-5547-9213"},"institutions":[{"id":"https://openalex.org/I40120149","display_name":"University of Oxford","ror":"https://ror.org/052gg0110","country_code":"GB","type":"funder","lineage":["https://openalex.org/I40120149"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Dino Sejdinovic","raw_affiliation_strings":["Department of Statistics, University of Oxford, Oxford, UK"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, University of Oxford, Oxford, UK","institution_ids":["https://openalex.org/I40120149"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5065715503"],"corresponding_institution_ids":["https://openalex.org/I40120149"],"apc_list":{"value":2390,"currency":"EUR","value_usd":2990},"apc_paid":{"value":2390,"currency":"EUR","value_usd":2990},"fwci":0.23,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":2,"citation_normalized_percentile":{"value":0.358289,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":66,"max":71},"biblio":{"volume":"111","issue":"7","first_page":"2663","last_page":"2713"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12303","display_name":"Tensor decomposition and applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12303","display_name":"Tensor decomposition and applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13650","display_name":"Computational Physics and Python Applications","score":0.9246,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.62313926}],"concepts":[{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.745289},{"id":"https://openalex.org/C155281189","wikidata":"https://www.wikidata.org/wiki/Q3518150","display_name":"Tensor (intrinsic definition)","level":2,"score":0.6434527},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.62313926},{"id":"https://openalex.org/C187834632","wikidata":"https://www.wikidata.org/wiki/Q188804","display_name":"Factorization","level":2,"score":0.61175823},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.5723638},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.49752715},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.4780672},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4637089},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46119404},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4360528},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.41533116},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.39491448},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3898355},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3312611},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.22895792},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.07718167},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10994-021-06067-7","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10994-021-06067-7.pdf","source":{"id":"https://openalex.org/S62148650","display_name":"Machine Learning","issn_l":"0885-6125","issn":["0885-6125","1573-0565"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10994-021-06067-7","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10994-021-06067-7.pdf","source":{"id":"https://openalex.org/S62148650","display_name":"Machine Learning","issn_l":"0885-6125","issn":["0885-6125","1573-0565"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1540155273","https://openalex.org/W176909285","https://openalex.org/W1993482030","https://openalex.org/W2018067627","https://openalex.org/W2024165284","https://openalex.org/W2025605741","https://openalex.org/W2031305127","https://openalex.org/W2049588365","https://openalex.org/W2049633694","https://openalex.org/W2052164429","https://openalex.org/W2054553473","https://openalex.org/W2113207845","https://openalex.org/W2130681737","https://openalex.org/W2137245235","https://openalex.org/W2144902422","https://openalex.org/W2154259852","https://openalex.org/W2166851633","https://openalex.org/W2169075713","https://openalex.org/W2171589479","https://openalex.org/W2254012688","https://openalex.org/W2295739661","https://openalex.org/W2431890537","https://openalex.org/W2509235963","https://openalex.org/W2549483845","https://openalex.org/W2552480641","https://openalex.org/W2563647077","https://openalex.org/W2579661004","https://openalex.org/W2622254295","https://openalex.org/W2739547565","https://openalex.org/W2768348081","https://openalex.org/W2892986767","https://openalex.org/W2900371000","https://openalex.org/W2911459452","https://openalex.org/W2914231700","https://openalex.org/W2945976633","https://openalex.org/W2953132240","https://openalex.org/W2963219310","https://openalex.org/W2966750432","https://openalex.org/W2980994438","https://openalex.org/W625867593","https://openalex.org/W93044058"],"related_works":["https://openalex.org/W2963720107","https://openalex.org/W2963117165","https://openalex.org/W2954309532","https://openalex.org/W2950281908","https://openalex.org/W2794559785","https://openalex.org/W2583828359","https://openalex.org/W2084977674","https://openalex.org/W2055243143","https://openalex.org/W2013873776","https://openalex.org/W1754499339"],"abstract_inverted_index":{"Abstract":[0],"We":[1,29,75],"outline":[2],"an":[3],"inherent":[4],"flaw":[5],"of":[6,18],"tensor":[7,35],"factorization":[8,61],"models":[9],"when":[10],"latent":[11],"factors":[12],"are":[13],"expressed":[14],"as":[15,40],"a":[16,23,41,78],"function":[17],"side":[19],"information":[20],"and":[21,37,44,58,89],"propose":[22],"novel":[24],"method":[25],"to":[26],"mitigate":[27],"this.":[28],"coin":[30],"our":[31],"methodology":[32],"kernel":[33],"fried":[34],"(KFT)":[36],"present":[38],"it":[39],"large-scale":[42,73],"prediction":[43],"forecasting":[45],"tool":[46],"for":[47,82],"high":[48],"dimensional":[49],"data.":[50],"Our":[51],"results":[52],"show":[53],"superior":[54],"performance":[55],"against":[56],"LightGBM":[57],"Field":[59],"aware":[60],"machines":[62],"(FFM),":[63],"two":[64],"algorithms":[65],"with":[66,91],"proven":[67],"track":[68],"records,":[69],"widely":[70],"used":[71],"in":[72],"prediction.":[74],"also":[76],"develop":[77],"variational":[79],"inference":[80],"framework":[81],"KFT":[83],"which":[84],"enables":[85],"associating":[86],"the":[87],"predictions":[88],"forecasts":[90],"calibrated":[92],"uncertainty":[93],"estimates":[94],"on":[95],"several":[96],"datasets.":[97]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3196433949","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1}],"updated_date":"2025-04-04T14:35:42.056874","created_date":"2021-09-13"}