{"id":"https://openalex.org/W3136214430","doi":"https://doi.org/10.1007/s10994-021-05957-0","title":"Boosting Poisson regression models with telematics car driving data","display_name":"Boosting Poisson regression models with telematics car driving data","publication_year":2021,"publication_date":"2021-03-21","ids":{"openalex":"https://openalex.org/W3136214430","doi":"https://doi.org/10.1007/s10994-021-05957-0","mag":"3136214430"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10994-021-05957-0","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10994-021-05957-0.pdf","source":{"id":"https://openalex.org/S62148650","display_name":"Machine Learning","issn_l":"0885-6125","issn":["0885-6125","1573-0565"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://link.springer.com/content/pdf/10.1007/s10994-021-05957-0.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5086168764","display_name":"Guangyuan Gao","orcid":"https://orcid.org/0000-0002-3287-375X"},"institutions":[{"id":"https://openalex.org/I78988378","display_name":"Renmin University of China","ror":"https://ror.org/041pakw92","country_code":"CN","type":"funder","lineage":["https://openalex.org/I78988378"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guangyuan Gao","raw_affiliation_strings":["Center for Applied Statistics and School of Statistics, Renmin University of China, 100872, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Center for Applied Statistics and School of Statistics, Renmin University of China, 100872, Beijing, China","institution_ids":["https://openalex.org/I78988378"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100351646","display_name":"He Wang","orcid":"https://orcid.org/0000-0001-7444-2053"},"institutions":[{"id":"https://openalex.org/I3045169105","display_name":"Southern University of Science and Technology","ror":"https://ror.org/049tv2d57","country_code":"CN","type":"funder","lineage":["https://openalex.org/I3045169105"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"He Wang","raw_affiliation_strings":["Department of Finance and Ying Shang Nan Ke Actuarial Science Center, Southern University of Science and Technology, 518055, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Department of Finance and Ying Shang Nan Ke Actuarial Science Center, Southern University of Science and Technology, 518055, Shenzhen, China","institution_ids":["https://openalex.org/I3045169105"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5004533209","display_name":"Mario V. W\u00fcthrich","orcid":"https://orcid.org/0000-0003-4035-552X"},"institutions":[{"id":"https://openalex.org/I35440088","display_name":"ETH Zurich","ror":"https://ror.org/05a28rw58","country_code":"CH","type":"funder","lineage":["https://openalex.org/I2799323385","https://openalex.org/I35440088"]}],"countries":["CH"],"is_corresponding":true,"raw_author_name":"Mario V. W\u00fcthrich","raw_affiliation_strings":["Department of Mathematics, ETH Zurich, RiskLab, 8092, Zurich, Switzerland"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics, ETH Zurich, RiskLab, 8092, Zurich, Switzerland","institution_ids":["https://openalex.org/I35440088"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5004533209"],"corresponding_institution_ids":["https://openalex.org/I35440088"],"apc_list":{"value":2390,"currency":"EUR","value_usd":2990},"apc_paid":{"value":2390,"currency":"EUR","value_usd":2990},"fwci":5.084,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":37,"citation_normalized_percentile":{"value":0.999915,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"111","issue":"1","first_page":"243","last_page":"272"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11720","display_name":"Probability and Risk Models","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11720","display_name":"Probability and Risk Models","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12011","display_name":"Insurance, Mortality, Demography, Risk Management","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/3317","display_name":"Demography"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12394","display_name":"Insurance and Financial Risk Management","score":0.9855,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/telematics","display_name":"Telematics","score":0.9828418},{"id":"https://openalex.org/keywords/boosting","display_name":"Boosting","score":0.5914269},{"id":"https://openalex.org/keywords/complement","display_name":"Complement","score":0.47108233}],"concepts":[{"id":"https://openalex.org/C89074322","wikidata":"https://www.wikidata.org/wiki/Q485669","display_name":"Telematics","level":2,"score":0.9828418},{"id":"https://openalex.org/C73269764","wikidata":"https://www.wikidata.org/wiki/Q954529","display_name":"Poisson regression","level":3,"score":0.6186122},{"id":"https://openalex.org/C46686674","wikidata":"https://www.wikidata.org/wiki/Q466303","display_name":"Boosting (machine learning)","level":2,"score":0.5914269},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.56448346},{"id":"https://openalex.org/C112313634","wikidata":"https://www.wikidata.org/wiki/Q7886648","display_name":"Complement (music)","level":5,"score":0.47108233},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.4688341},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.41943756},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.35388315},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.34057087},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.32730347},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32132667},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.14739785},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.076111466},{"id":"https://openalex.org/C127716648","wikidata":"https://www.wikidata.org/wiki/Q104053","display_name":"Phenotype","level":3,"score":0.0},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C99454951","wikidata":"https://www.wikidata.org/wiki/Q932068","display_name":"Environmental health","level":1,"score":0.0},{"id":"https://openalex.org/C188082640","wikidata":"https://www.wikidata.org/wiki/Q1780899","display_name":"Complementation","level":4,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10994-021-05957-0","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10994-021-05957-0.pdf","source":{"id":"https://openalex.org/S62148650","display_name":"Machine Learning","issn_l":"0885-6125","issn":["0885-6125","1573-0565"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10994-021-05957-0","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10994-021-05957-0.pdf","source":{"id":"https://openalex.org/S62148650","display_name":"Machine Learning","issn_l":"0885-6125","issn":["0885-6125","1573-0565"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.53,"display_name":"Decent work and economic growth","id":"https://metadata.un.org/sdg/8"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"71901207"},{"funder":"https://openalex.org/F4320321652","funder_display_name":"Eidgen\u00f6ssische Technische Hochschule Z\u00fcrich","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W1568403209","https://openalex.org/W1977165701","https://openalex.org/W1984277790","https://openalex.org/W2014980744","https://openalex.org/W2052138306","https://openalex.org/W2072284544","https://openalex.org/W2073067026","https://openalex.org/W2075158265","https://openalex.org/W2274500638","https://openalex.org/W2301896715","https://openalex.org/W2331492351","https://openalex.org/W2336133126","https://openalex.org/W2338057476","https://openalex.org/W2410338850","https://openalex.org/W2461839683","https://openalex.org/W2485717584","https://openalex.org/W2519010223","https://openalex.org/W2557283755","https://openalex.org/W2584176441","https://openalex.org/W2617284765","https://openalex.org/W2758018149","https://openalex.org/W2784499371","https://openalex.org/W2896119643","https://openalex.org/W2903908651","https://openalex.org/W2908639855","https://openalex.org/W2915058904","https://openalex.org/W2962957157","https://openalex.org/W2971574995","https://openalex.org/W2971717062","https://openalex.org/W2990646398","https://openalex.org/W3020999838","https://openalex.org/W3042452368","https://openalex.org/W3080840864","https://openalex.org/W3081478208","https://openalex.org/W3086549571","https://openalex.org/W3096004268","https://openalex.org/W3112727922","https://openalex.org/W3124322175","https://openalex.org/W4236654676","https://openalex.org/W656455340"],"related_works":["https://openalex.org/W571717219","https://openalex.org/W4366769355","https://openalex.org/W3119167094","https://openalex.org/W2906361627","https://openalex.org/W28596303","https://openalex.org/W2759839044","https://openalex.org/W2753549526","https://openalex.org/W2111119084","https://openalex.org/W2075084475","https://openalex.org/W2000744621"],"abstract_inverted_index":{"Abstract":[0],"With":[1],"the":[2,82,108],"emergence":[3],"of":[4,118],"telematics":[5,24,40,56,73,100],"car":[6,25,41,74,101],"driving":[7,26,42,51,75,102],"data,":[8],"insurance":[9],"companies":[10],"have":[11],"started":[12],"to":[13,44,71,106],"boost":[14],"classical":[15,46,95],"actuarial":[16,47,96],"regression":[17,66,85],"models":[18],"for":[19],"claim":[20,83],"frequency":[21,84],"prediction":[22],"with":[23,49],"information.":[27],"In":[28],"this":[29],"paper,":[30],"we":[31],"propose":[32],"two":[33,116],"data-driven":[34],"neural":[35,59],"network":[36],"approaches":[37],"that":[38,93,114],"process":[39],"data":[43,76,103],"complement":[45,122],"pricing":[48],"a":[50,78],"behavior":[52],"risk":[53,97],"factor":[54],"from":[55,89],"data.":[57],"Our":[58],"networks":[60],"simultaneously":[61],"accommodate":[62],"feature":[63],"engineering":[64],"and":[65,99,121],"modeling":[67],"which":[68],"allows":[69],"us":[70],"integrate":[72],"in":[77],"one-step":[79],"approach":[80],"into":[81],"models.":[86,111],"We":[87],"conclude":[88],"our":[90],"numerical":[91],"analysis":[92],"both":[94],"factors":[98],"are":[104],"necessary":[105],"receive":[107],"best":[109],"predictive":[110],"This":[112],"emphasizes":[113],"these":[115],"sources":[117],"information":[119],"interact":[120],"each":[123],"other.":[124]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3136214430","counts_by_year":[{"year":2025,"cited_by_count":3},{"year":2024,"cited_by_count":13},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":8},{"year":2021,"cited_by_count":7}],"updated_date":"2025-04-09T00:32:42.276399","created_date":"2021-03-29"}