{"id":"https://openalex.org/W4385765563","doi":"https://doi.org/10.1007/s10618-023-00954-4","title":"Column-coherent matrix decomposition","display_name":"Column-coherent matrix decomposition","publication_year":2023,"publication_date":"2023-08-11","ids":{"openalex":"https://openalex.org/W4385765563","doi":"https://doi.org/10.1007/s10618-023-00954-4"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-023-00954-4","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-023-00954-4.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://link.springer.com/content/pdf/10.1007/s10618-023-00954-4.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5067444605","display_name":"Nikolaj Tatti","orcid":"https://orcid.org/0000-0002-2087-5360"},"institutions":[{"id":"https://openalex.org/I133731052","display_name":"University of Helsinki","ror":"https://ror.org/040af2s02","country_code":"FI","type":"education","lineage":["https://openalex.org/I133731052"]},{"id":"https://openalex.org/I32943570","display_name":"Helsinki Institute for Information Technology","ror":"https://ror.org/05kph4940","country_code":"FI","type":"facility","lineage":["https://openalex.org/I133731052","https://openalex.org/I32943570","https://openalex.org/I9927081"]}],"countries":["FI"],"is_corresponding":true,"raw_author_name":"Nikolaj Tatti","raw_affiliation_strings":["HIIT, University of Helsinki, Helsinki, Finland"],"affiliations":[{"raw_affiliation_string":"HIIT, University of Helsinki, Helsinki, Finland","institution_ids":["https://openalex.org/I133731052","https://openalex.org/I32943570"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5067444605"],"corresponding_institution_ids":["https://openalex.org/I133731052","https://openalex.org/I32943570"],"apc_list":{"value":2390,"currency":"EUR","value_usd":2990,"provenance":"doaj"},"apc_paid":{"value":2390,"currency":"EUR","value_usd":2990,"provenance":"doaj"},"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":69},"biblio":{"volume":"37","issue":"6","first_page":"2564","last_page":"2588"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12303","display_name":"Tensor Decompositions and Applications in Multilinear Algebra","score":0.9957,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12303","display_name":"Tensor Decompositions and Applications in Multilinear Algebra","score":0.9957,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Theory and Applications of Compressed Sensing","score":0.9921,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Image Feature Retrieval and Recognition Techniques","score":0.9839,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/matrix-completion","display_name":"Matrix Completion","score":0.565727},{"id":"https://openalex.org/keywords/singular-value-decomposition","display_name":"Singular Value Decomposition","score":0.564033},{"id":"https://openalex.org/keywords/tensor-decomposition","display_name":"Tensor Decomposition","score":0.545403},{"id":"https://openalex.org/keywords/convex-optimization","display_name":"Convex Optimization","score":0.540153},{"id":"https://openalex.org/keywords/orthogonal-matching-pursuit","display_name":"Orthogonal Matching Pursuit","score":0.524147}],"concepts":[{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.5344542},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3445841},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.32065636},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.3203828}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-023-00954-4","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-023-00954-4.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-023-00954-4","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-023-00954-4.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1500188831","https://openalex.org/W1592012257","https://openalex.org/W1602023060","https://openalex.org/W1889692461","https://openalex.org/W1975946664","https://openalex.org/W1985572324","https://openalex.org/W2015397797","https://openalex.org/W2018369877","https://openalex.org/W2024491681","https://openalex.org/W2036328877","https://openalex.org/W2057058417","https://openalex.org/W2128869116","https://openalex.org/W2133762042","https://openalex.org/W2160342152","https://openalex.org/W2507921776","https://openalex.org/W2806295024","https://openalex.org/W2963651520","https://openalex.org/W3103055935","https://openalex.org/W31165685","https://openalex.org/W4207048092","https://openalex.org/W4252115301"],"related_works":["https://openalex.org/W4390401159","https://openalex.org/W4388998267","https://openalex.org/W4246450666","https://openalex.org/W4230250635","https://openalex.org/W3120461830","https://openalex.org/W3041790586","https://openalex.org/W2898370298","https://openalex.org/W2748952813","https://openalex.org/W2744391499","https://openalex.org/W2018879842"],"abstract_inverted_index":{"Abstract":[0],"Matrix":[1],"decomposition":[2,226,264],"is":[3,134,165],"a":[4,28,45,54,135,141,146,156,207],"widely":[5],"used":[6],"tool":[7],"in":[8,88,144,150,153,210,216,280],"machine":[9],"learning":[10],"with":[11,228],"many":[12],"applications":[13],"such":[14,145],"as":[15,265,267],"dimension":[16],"reduction":[17],"or":[18],"visualization.":[19],"In":[20],"this":[21],"paper":[22],"we":[23,49,78,171],"consider":[24],"decomposing":[25],"X":[26,133],",":[27,43,53,69,94,98,102],"matrix":[29,55,136],"of":[30,56,83,91,227,262],"size":[31,57],"$$n":[32,58],"\\times":[33,59],"m$$":[34],"":[36,62,105,233],"":[37,63,106,234],"n":[38,64],"\u00d7":[39,65],"m":[40],"":[41,67,124,239],"":[42,68,125,240],"to":[44,71,86],"product":[46],"WS":[47],"where":[48,137],"require":[50,79],"that":[51,80,161,274],"S":[52,84,154,185,196,211],"k$$":[60],"k":[66,236],"needs":[70,85],"have":[72],"consecutive":[73],"ones":[74,149],"property.":[75],"More":[76],"specifically,":[77],"each":[81,138,151],"row":[82,139,152,209],"be":[87],"the":[89,148,162,169,213,224,247,255,260,263,268],"form":[90],"$$0,":[92],"\\ldots":[93,97,101],"0,":[95,100],"1,":[96,99],"0$$":[103],"0":[107,111,119,123],",":[108,110,112,114,116,118,120,122],"\u2026":[109,115,121],"1":[113,117,238],".":[126,218],"Such":[127],"decompositions":[128],"are":[129,180,202],"particularly":[130],"meaningful":[131],"if":[132],"represents":[140],"time":[142,157],"series;":[143],"case":[147],"represent":[155],"segment.":[158],"We":[159,253,271],"show":[160,272],"optimization":[163],"problem":[164,170],"inapproximable.":[166],"To":[167],"solve":[168],"propose":[172],"5":[173],"different":[174],"algorithms.":[175],"The":[176,198,219],"first":[177,222],"two":[178,200],"algorithms":[179,201,256,276],"based":[181,203],"on":[182,204,259],"solving":[183,192],"iteratively":[184],"while":[186,194],"keeping":[187,195],"W":[188,193,217],"fixed":[189],"and":[190,212,243],"then":[191,244],"fixed.":[197],"next":[199],"greedily":[205,245],"optimizing":[206],"single":[208],"corresponding":[214],"column":[215],"last":[220],"algorithm":[221],"finds":[223],"optimal":[225],"$$2k":[229],"-":[230],"1$$":[231],"2":[235],"-":[237],"non-overlapping":[241],"rows,":[242],"combines":[246],"rows":[248,251],"until":[249],"k":[250],"remain.":[252],"compare":[254],"experimentally,":[257],"focusing":[258],"quality":[261],"well":[266],"computational":[269],"time.":[270,282],"experimentally":[273],"our":[275],"yield":[277],"interpretable":[278],"results":[279],"practical":[281]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385765563","counts_by_year":[],"updated_date":"2024-11-22T07:15:38.949101","created_date":"2023-08-12"}