{"id":"https://openalex.org/W4385637640","doi":"https://doi.org/10.1007/s10618-023-00942-8","title":"Symmetry properties and asymmetry evaluation of Bayesian Confirmation Measures","display_name":"Symmetry properties and asymmetry evaluation of Bayesian Confirmation Measures","publication_year":2023,"publication_date":"2023-08-07","ids":{"openalex":"https://openalex.org/W4385637640","doi":"https://doi.org/10.1007/s10618-023-00942-8"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-023-00942-8","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-023-00942-8.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://link.springer.com/content/pdf/10.1007/s10618-023-00942-8.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5020566231","display_name":"Emilio Celotto","orcid":null},"institutions":[{"id":"https://openalex.org/I149461666","display_name":"Ca' Foscari University of Venice","ror":"https://ror.org/04yzxz566","country_code":"IT","type":"education","lineage":["https://openalex.org/I149461666"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Emilio Celotto","raw_affiliation_strings":["Department of Management, Ca\u2019 Foscari University of Venice, Venice, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Management, Ca\u2019 Foscari University of Venice, Venice, Italy","institution_ids":["https://openalex.org/I149461666"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091201887","display_name":"Andrea Ellero","orcid":"https://orcid.org/0000-0002-0389-7998"},"institutions":[{"id":"https://openalex.org/I149461666","display_name":"Ca' Foscari University of Venice","ror":"https://ror.org/04yzxz566","country_code":"IT","type":"education","lineage":["https://openalex.org/I149461666"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Andrea Ellero","raw_affiliation_strings":["Department of Management, Ca\u2019 Foscari University of Venice, Venice, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Management, Ca\u2019 Foscari University of Venice, Venice, Italy","institution_ids":["https://openalex.org/I149461666"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5042515402","display_name":"Paola Ferretti","orcid":"https://orcid.org/0000-0001-6669-2212"},"institutions":[{"id":"https://openalex.org/I149461666","display_name":"Ca' Foscari University of Venice","ror":"https://ror.org/04yzxz566","country_code":"IT","type":"education","lineage":["https://openalex.org/I149461666"]}],"countries":["IT"],"is_corresponding":true,"raw_author_name":"Paola Ferretti","raw_affiliation_strings":["Department of Economics, Ca\u2019 Foscari University of Venice, Venice, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Economics, Ca\u2019 Foscari University of Venice, Venice, Italy","institution_ids":["https://openalex.org/I149461666"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5042515402"],"corresponding_institution_ids":["https://openalex.org/I149461666"],"apc_list":{"value":2390,"currency":"EUR","value_usd":2990,"provenance":"doaj"},"apc_paid":{"value":2390,"currency":"EUR","value_usd":2990,"provenance":"doaj"},"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":68},"biblio":{"volume":"37","issue":"6","first_page":"2255","last_page":"2280"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11303","display_name":"Learning and Inference in Bayesian Networks","score":0.997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11303","display_name":"Learning and Inference in Bayesian Networks","score":0.997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Model-Based Clustering with Mixture Models","score":0.9949,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10243","display_name":"Methods for Handling Missing Data in Statistical Analysis","score":0.9926,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/bayesian-inference","display_name":"Bayesian Inference","score":0.52002},{"id":"https://openalex.org/keywords/model-complexity","display_name":"Model Complexity","score":0.51781},{"id":"https://openalex.org/keywords/imprecise-probabilities","display_name":"Imprecise Probabilities","score":0.510511},{"id":"https://openalex.org/keywords/nonparametric-bayesian","display_name":"Nonparametric Bayesian","score":0.502368},{"id":"https://openalex.org/keywords/probabilistic-learning","display_name":"Probabilistic Learning","score":0.502218}],"concepts":[{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.5984646},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46495497},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4220221}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-023-00942-8","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-023-00942-8.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-023-00942-8","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-023-00942-8.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W1210699751","https://openalex.org/W188822259","https://openalex.org/W1953512122","https://openalex.org/W1973036367","https://openalex.org/W2000378335","https://openalex.org/W2010292575","https://openalex.org/W2011101028","https://openalex.org/W2018747667","https://openalex.org/W2048433053","https://openalex.org/W2053154970","https://openalex.org/W2063153943","https://openalex.org/W2063422717","https://openalex.org/W2064440670","https://openalex.org/W2065050617","https://openalex.org/W2095952922","https://openalex.org/W2101910237","https://openalex.org/W2102297485","https://openalex.org/W2103870469","https://openalex.org/W2122567216","https://openalex.org/W2132965194","https://openalex.org/W2137535163","https://openalex.org/W2282291503","https://openalex.org/W2286210401","https://openalex.org/W2290893725","https://openalex.org/W2517070677","https://openalex.org/W2559877910","https://openalex.org/W26269069","https://openalex.org/W2719558609","https://openalex.org/W2808432620","https://openalex.org/W2883339695","https://openalex.org/W2969224979","https://openalex.org/W3011777313","https://openalex.org/W3028000971","https://openalex.org/W3080551285","https://openalex.org/W4246799334","https://openalex.org/W50180825","https://openalex.org/W606358983"],"related_works":["https://openalex.org/W2748952813","https://openalex.org/W2530322880","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2350741829","https://openalex.org/W2073681303","https://openalex.org/W2051487156","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Abstract":[0],"Bayesian":[1],"Confirmation":[2],"Measures":[3],"(BCMs)":[4],"are":[5],"used":[6],"to":[7,11,104,119,134,169,256],"assess":[8],"the":[9,77,85,109,120,126,161,164,175,178,182,230,234,239,243],"degree":[10],"which":[12,185,194],"an":[13,21,117,171],"evidence":[14,63,228],"(or":[15,23],"premise)":[16],"E":[17],"supports":[18],"or":[19],"contradicts":[20],"hypothesis":[22],"conclusion)":[24],"H":[25],",":[26,43],"making":[27],"use":[28,232],"of":[29,60,62,101,111,114,123,125,138,160,163,177,219,233,242,246,259],"prior":[30],"probability":[31,45,61],"$$Pr(H)$$":[32],"":[34,48,66],"":[35,49,67],"P":[36,50,68],"r":[37,51,69],"(":[38,52,70],"H":[39,53],")":[40,56,72],"":[41,57,73],"":[42,58,74],"posterior":[44],"$$Pr(H|E)$$":[46],"|":[54],"E":[55,71],"and":[59,99,193,263],"$$Pr(E)$$":[64],".":[75],"In":[76,128,203],"literature":[78],"many":[79],"BCMs":[80,206],"have":[81,96],"been":[82,97],"defined":[83],"with":[84],"consequent":[86],"need":[87],"for":[88,143,201,229],"their":[89,260],"comparison.":[90],"For":[91],"this":[92,129,153,221,250],"purpose,":[93],"various":[94],"criteria":[95],"proposed":[98],"some":[100,247,258],"these":[102],"refer":[103],"symmetry":[105,179,186,213],"properties.":[106,180],"We":[107],"relate":[108],"set":[110],"possible":[112,133,255],"symmetries":[113,124,139],"BCMs,":[115,248],"via":[116],"isomorphism,":[118],"dihedral":[121,165],"group":[122,166],"square.":[127],"way":[130,222,251],"it":[131,253],"is":[132,236,254],"identify":[135],"10":[136],"subsets":[137],"that":[140,173,207],"can":[141],"coexist,":[142],"each":[144],"subset":[145],"we":[146,197],"suggest":[147],"a":[148,211],"representative":[149],"BCM,":[150],"defining":[151],"at":[152],"aim":[154],"two":[155],"new":[156],"BCMs.":[157,202],"The":[158,227],"structure":[159],"subgroups":[162],"allows":[167],"also":[168],"provide":[170],"algorithm":[172],"simplifies":[174],"verification":[176],"Addressing":[181],"debate":[183],"on":[184],"properties":[187],"should":[188,195],"be":[189],"considered":[190],"as":[191],"desirable":[192],"not,":[196],"define":[198],"asymmetry":[199,244],"measures":[200],"fact,":[204],"different":[205,217],"do":[208],"not":[209],"satisfy":[210],"specific":[212],"property":[214],"may":[215],"exhibit":[216],"levels":[218],"asymmetry,":[220],"resulting":[223],"more":[224],"(less)":[225],"desirable.":[226],"practical":[231],"approach":[235],"given":[237],"through":[238],"numerical":[240],"evaluation":[241],"degrees":[245],"showing":[249],"how":[252],"discover":[257],"characteristics,":[261],"similarities":[262],"differences.":[264]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385637640","counts_by_year":[],"updated_date":"2024-12-03T19:48:39.844031","created_date":"2023-08-08"}