{"id":"https://openalex.org/W4313304560","doi":"https://doi.org/10.1007/s10618-022-00903-7","title":"Graph convolutional networks for traffic forecasting with missing values","display_name":"Graph convolutional networks for traffic forecasting with missing values","publication_year":2022,"publication_date":"2022-12-16","ids":{"openalex":"https://openalex.org/W4313304560","doi":"https://doi.org/10.1007/s10618-022-00903-7"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-022-00903-7","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00903-7.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00903-7.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5029177503","display_name":"Jingwei Zuo","orcid":"https://orcid.org/0000-0002-3251-6939"},"institutions":[{"id":"https://openalex.org/I4210087059","display_name":"Technology Innovation Institute","ror":"https://ror.org/001kv2y39","country_code":"AE","type":"facility","lineage":["https://openalex.org/I4210087059"]}],"countries":["AE"],"is_corresponding":false,"raw_author_name":"Jingwei Zuo","raw_affiliation_strings":["TII - Technology Innovation Institute (United Arab Emirates)"],"affiliations":[{"raw_affiliation_string":"TII - Technology Innovation Institute (United Arab Emirates)","institution_ids":["https://openalex.org/I4210087059"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029906183","display_name":"Karine Zeitouni","orcid":"https://orcid.org/0000-0002-5602-6942"},"institutions":[{"id":"https://openalex.org/I4390039268","display_name":"Donn\u00e9es et algorithmes pour une ville intelligente et durable","ror":"https://ror.org/01xta2p78","country_code":null,"type":"facility","lineage":["https://openalex.org/I195731000","https://openalex.org/I277688954","https://openalex.org/I4390039268"]}],"countries":[],"is_corresponding":false,"raw_author_name":"Karine Zeitouni","raw_affiliation_strings":["DAVID - Donn\u00e9es et algorithmes pour une ville intelligente et durable - DAVID (B\u00e2timent Descartes \u2014 Campus des Sciences\r\nUniversit\u00e9 de Versailles Saint-Quentin\r\n45 avenue des \u00c9tats-Unis\r\n78035 Versailles - France)"],"affiliations":[{"raw_affiliation_string":"DAVID - Donn\u00e9es et algorithmes pour une ville intelligente et durable - DAVID (B\u00e2timent Descartes \u2014 Campus des Sciences\r\nUniversit\u00e9 de Versailles Saint-Quentin\r\n45 avenue des \u00c9tats-Unis\r\n78035 Versailles - France)","institution_ids":["https://openalex.org/I4390039268"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034427778","display_name":"Y\u00e9hia Taher","orcid":"https://orcid.org/0000-0002-8706-8889"},"institutions":[{"id":"https://openalex.org/I4390039268","display_name":"Donn\u00e9es et algorithmes pour une ville intelligente et durable","ror":"https://ror.org/01xta2p78","country_code":null,"type":"facility","lineage":["https://openalex.org/I195731000","https://openalex.org/I277688954","https://openalex.org/I4390039268"]}],"countries":[],"is_corresponding":false,"raw_author_name":"Yehia Taher","raw_affiliation_strings":["DAVID - Donn\u00e9es et algorithmes pour une ville intelligente et durable - DAVID (B\u00e2timent Descartes \u2014 Campus des Sciences\r\nUniversit\u00e9 de Versailles Saint-Quentin\r\n45 avenue des \u00c9tats-Unis\r\n78035 Versailles - France)"],"affiliations":[{"raw_affiliation_string":"DAVID - Donn\u00e9es et algorithmes pour une ville intelligente et durable - DAVID (B\u00e2timent Descartes \u2014 Campus des Sciences\r\nUniversit\u00e9 de Versailles Saint-Quentin\r\n45 avenue des \u00c9tats-Unis\r\n78035 Versailles - France)","institution_ids":["https://openalex.org/I4390039268"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5034007640","display_name":"Sandra Garc\u00eda-Rodr\u00edguez","orcid":"https://orcid.org/0000-0002-5352-2510"},"institutions":[{"id":"https://openalex.org/I2738703131","display_name":"Commissariat \u00e0 l'\u00c9nergie Atomique et aux \u00c9nergies Alternatives","ror":"https://ror.org/00jjx8s55","country_code":"FR","type":"government","lineage":["https://openalex.org/I2738703131"]},{"id":"https://openalex.org/I4210085861","display_name":"CEA LIST","ror":"https://ror.org/000dbcc61","country_code":"FR","type":"government","lineage":["https://openalex.org/I2738703131","https://openalex.org/I4210085861","https://openalex.org/I4210117989"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Sandra Garcia-Rodriguez","raw_affiliation_strings":["LI3A (CEA, LIST) - Intelligence Artificielle et Apprentissage Automatique (CEA, LIST) (Artificial Intelligence and Automatic Learning (LI3A)\r\n91191 - Gif sur Yvette cedex\r\nanciennement Laboratoire Analyse des Donn\u00e9es et Intelligence des Syst\u00e8mes (LADIS), Laboratoire Information Mod\u00e8les et Apprentissage (LIMA), Laboratoire Intelligence Multi-capteurs et Apprentissage (LIMA) - France)"],"affiliations":[{"raw_affiliation_string":"LI3A (CEA, LIST) - Intelligence Artificielle et Apprentissage Automatique (CEA, LIST) (Artificial Intelligence and Automatic Learning (LI3A)\r\n91191 - Gif sur Yvette cedex\r\nanciennement Laboratoire Analyse des Donn\u00e9es et Intelligence des Syst\u00e8mes (LADIS), Laboratoire Information Mod\u00e8les et Apprentissage (LIMA), Laboratoire Intelligence Multi-capteurs et Apprentissage (LIMA) - France)","institution_ids":["https://openalex.org/I2738703131","https://openalex.org/I4210085861"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":2390,"currency":"EUR","value_usd":2990},"apc_paid":{"value":2390,"currency":"EUR","value_usd":2990},"fwci":4.481,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":32,"citation_normalized_percentile":{"value":0.768208,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"37","issue":"2","first_page":"913","last_page":"947"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10698","display_name":"Transportation Planning and Optimization","score":0.9953,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C9357733","wikidata":"https://www.wikidata.org/wiki/Q6878417","display_name":"Missing data","level":2,"score":0.79831916},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70990354},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.67682225},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.57348806},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.52508223},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.4883942},{"id":"https://openalex.org/C43214815","wikidata":"https://www.wikidata.org/wiki/Q7310987","display_name":"Reliability (semiconductor)","level":3,"score":0.43486157},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.42763597},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32974362},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.21673694},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.08142337},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-022-00903-7","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00903-7.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://hal.science/hal-04069257","pdf_url":"https://hal.science/hal-04069257/document","source":{"id":"https://openalex.org/S4306402512","display_name":"HAL (Le Centre pour la Communication Scientifique Directe)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1294671590","host_organization_name":"Centre National de la Recherche Scientifique","host_organization_lineage":["https://openalex.org/I1294671590"],"host_organization_lineage_names":["Centre National de la Recherche Scientifique"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-022-00903-7","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00903-7.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W1857789879","https://openalex.org/W2016944307","https://openalex.org/W2072604363","https://openalex.org/W2115098571","https://openalex.org/W2146332392","https://openalex.org/W2194775991","https://openalex.org/W2550143307","https://openalex.org/W2889230014","https://openalex.org/W2892035503","https://openalex.org/W2964010366","https://openalex.org/W2965341826","https://openalex.org/W2997705255","https://openalex.org/W3000301417","https://openalex.org/W3041279471","https://openalex.org/W3041552048","https://openalex.org/W3080253043","https://openalex.org/W3103720336","https://openalex.org/W3123909522","https://openalex.org/W3126367810","https://openalex.org/W3171958173","https://openalex.org/W3175872245","https://openalex.org/W3177318507","https://openalex.org/W3202811093","https://openalex.org/W4205314882","https://openalex.org/W4226327314","https://openalex.org/W4297903219"],"related_works":["https://openalex.org/W4380150146","https://openalex.org/W4289597203","https://openalex.org/W4285201053","https://openalex.org/W4283773154","https://openalex.org/W4256612600","https://openalex.org/W3139174110","https://openalex.org/W3024870410","https://openalex.org/W2410652950","https://openalex.org/W2085630472","https://openalex.org/W1977098485"],"abstract_inverted_index":{"Abstract":[0],"Traffic":[1],"forecasting":[2,88,136],"has":[3],"attracted":[4],"widespread":[5],"attention":[6],"recently.":[7],"In":[8],"reality,":[9],"traffic":[10,26,87,135],"data":[11,27,42],"usually":[12],"contains":[13],"missing":[14,34,63,120,131],"values":[15,51,64,121],"due":[16],"to":[17,96,116],"sensor":[18,70],"or":[19,55,71],"communication":[20],"errors.":[21],"The":[22,167],"Spatio-temporal":[23,124,141],"feature":[24],"in":[25,47,59,122,147],"brings":[28],"more":[29],"challenges":[30],"for":[31,36],"processing":[32,133],"such":[33,97],"values,":[35],"which":[37],"the":[38,50,62,114,118,123,130,163,174],"classic":[39],"techniques":[40],"(e.g.,":[41],"imputations)":[43],"are":[44,94],"limited:":[45],"(1)":[46],"temporal":[48],"axis,":[49,61],"can":[52,65],"be":[53],"randomly":[54],"consecutively":[56],"missing;":[57],"(2)":[58],"spatial":[60],"happen":[66],"on":[67,72,86,162,170],"one":[68],"single":[69],"multiple":[73],"sensors":[74],"simultaneously.":[75],"Recent":[76],"models":[77],"powered":[78],"by":[79],"Graph":[80,109],"Neural":[81],"Networks":[82],"achieved":[83],"satisfying":[84],"performance":[85],"tasks.":[89],"However,":[90],"few":[91],"of":[92,176],"them":[93],"applicable":[95],"a":[98,108,156],"complex":[99,119],"missing-value":[100],"context.":[101,125],"To":[102],"this":[103],"end,":[104],"we":[105,127],"propose":[106,153],"GCN-M,":[107],"Convolutional":[110],"Network":[111],"model":[112,129],"with":[113],"ability":[115],"handle":[117],"Particularly,":[126],"jointly":[128],"value":[132],"and":[134,143],"tasks,":[137],"considering":[138],"both":[139],"local":[140],"features":[142],"global":[144],"historical":[145],"patterns":[146],"an":[148],"attention-based":[149],"memory":[150],"network.":[151],"We":[152],"as":[154],"well":[155],"dynamic":[157],"graph":[158],"learning":[159],"module":[160],"based":[161],"learned":[164],"local-global":[165],"features.":[166],"experimental":[168],"results":[169],"real-life":[171],"datasets":[172],"show":[173],"reliability":[175],"our":[177],"proposed":[178],"method.":[179]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4313304560","counts_by_year":[{"year":2025,"cited_by_count":4},{"year":2024,"cited_by_count":16},{"year":2023,"cited_by_count":12}],"updated_date":"2025-02-21T00:27:34.227335","created_date":"2023-01-06"}